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Utility Theory Basics

Ordinal and Cardinal Utility

There is a basic contrast between:

Ordinal utility Υ(x) is invariant to monotonic transformations, so
Υ(x) is equivalent to Θ(Υ(x)) for any strictly increasing Θ.
Cardinal utility Ψ(x) is invariant to positive a¢ ne (aka linear)
transformations, so Ψ(x) is equivalent to a+ bΨ(x) for any b > 0.

In �nance we rely heavily on von Neumann-Morgenstern utility theory
which says that choice over lotteries, satisfying certain axioms, implies
maximization of the expectation of a cardinal utility function, de�ned over
outcomes.
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Utility Theory Basics

Reducing the Dimension of Utility

Finance theory generally works with low-dimensional arguments of the
utility function. Proceeding from greater to lesser generality:

Multiple goods, dates, and states (ordinal utility)

Multiple goods and dates, taking expectation over states (cardinal
utility)

Multiple dates only (one-good simpli�cation)

Time-separable utility, adding up over dates (U(C1) + δU(C2) + ...)

Single-date utility U(C1), which is equivalent to utility de�ned over
wealth U(W1).
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Utility Theory Jensen�s Inequality

Jensen�s Inequality

Consider a random variable ez and a function f .
De�nition: f is concave i¤ for all λ 2 [0, 1] and values a, b,

λf (a) + (1� λ)f (b) � f (λa+ (1� λ)b).

If f is twice di¤erentiable, then concavity implies that f 00 � 0.

Jensen�s Inequality : Ef (ez) � f (Eez) for all possible ez i¤ f is concave.
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Utility Theory Jensen�s Inequality

Jensen�s Inequality and Risk Aversion

Jensen�s Inequality : Ef (ez) � f (Eez) for all possible ez i¤ f is concave.
De�nition: an agent is risk averse if he dislikes all zero-mean risk at all
levels of wealth. That is, for all w0 and risk ex with Eex = 0,

Eu(w0 + ex) � u(w0).
This is equivalent to

Eu(ez) � u(Eez),
where ez = w0 + ex .
Thus risk aversion is equivalent to concavity of the utility function.
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Risk Aversion Measurement and Comparison

Measuring Risk Aversion

A natural measure of risk aversion is f 00, scaled to avoid dependence on
the units of measurement for utility. Absolute risk aversion A is de�ned by

A =
�f 00
f 0
.

Note that in general this is a function of the initial level of wealth.

John Y. Campbell (Ec2723) Utility Theory and Risk Aversion September 2010 7 / 35



Risk Aversion Measurement and Comparison

Comparing Risk Aversion

Let u1 and u2 have the same initial wealth. u1 is more risk-averse than u2
if u1 dislikes all lotteries that u2 dislikes, regardless of the common initial
wealth level.

De�ne φ(x) = u1(u�12 (x)). What are the properties of this function?

1. u1(z) = φ(u2(z)), so φ(.) turns u2 into u1.

2. u01(z) = φ0(u2(z))u02(z), so φ0 = u01/u
0
2 > 0.

3. u001 (z) = φ0(u2(z))u002 (z) + φ00(u2(z))u02(z)
2, so

φ00 =
u001 � φ0u002
u02
2 =

u01
u02
2 (A2 � A1).
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Risk Aversion Measurement and Comparison

Comparing Risk Aversion

4. Consider a risk ex that is disliked by u2, that is a risk s.t.
Eu2(w0 + ex) � u(w0). We have
Eu1(w0+ex) = Eφ(u2(w0+ex)) � φ(Eu2(w0+ex)) � φ(u2(w0)) = u1(w0)

for all ex i¤ φ is concave or equivalently φ00 � 0. But then from property 3
we must have A1 � A2.
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Risk Aversion Measurement and Comparison

Comparing Risk Aversion
5. The risk premium π is the amount one is willing to pay to avoid a pure
(zero-mean) risk. It solves

Eu(w0 + ex) = u(w0 � π).

De�ning z = w0 � π and ey = π + ex , this can be rewritten as
Eu(z + ey) = u(z).

Now de�ne π2 as the risk premium for agent 2, and de�ne z2 and ey2
accordingly. We have

Eu2(z2 + ey2) = u2(z2).
If u1 is more risk-averse than u2, then

Eu1(z2 + ey2) � u1(z2),
which implies π1 � π2.

John Y. Campbell (Ec2723) Utility Theory and Risk Aversion September 2010 10 / 35



Risk Aversion Measurement and Comparison

Comparing Risk Aversion

6. Consider a risk that may have a nonzero mean µ. It pays µ+ ex whereex has zero mean. The certainty equivalent C e satis�es
Eu(wo + µ+ ex) = u(w0 + C e ).

This implies that

C e (w0, u, µ+ ex) = µ� π(w0 + µ, u,ex).
Thus if u1 is more risk-averse than u2, then C e1 � C e2 .
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Risk Aversion Measurement and Comparison

Comparing Risk Aversion

In summary, the following statements are equivalent:

u1 is more risk-averse than u2.

u1 is a concave transformation of u2.

A1 � A2.
π1 � π2.

C e1 � C e2 .
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Risk Aversion The Arrow-Pratt Approximation

The Arrow-Pratt Approximation

Consider a pure risk ey = kex , where k is a scale factor. Write the risk
premium as a function g(k): g(k) = π(w0,u, kex) satis�es

Eu(w0 + kex) = u(w0 � g(k)).
Note that g(0) = 0.
Now di¤erentiate w.r.t. k:

Eexu0(w0 + kex) = �g 0(k)u0(w0 � g(k)).
Since Eex = 0, this implies that g 0(0) = 0.
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Risk Aversion The Arrow-Pratt Approximation

The Arrow-Pratt Approximation

Di¤erentiate w.r.t. k a second time:

Eex2u00(wo + kex) = g 0(k)2u00(w0 � g(k))� g 00(k)u0(w0 � g(k)),
which implies that

g 00(0) =
�u00(w0)
u0(w0)

Eex2 = A(w0)Eex2.
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Risk Aversion The Arrow-Pratt Approximation

The Arrow-Pratt Approximation

Now take a Taylor approximation of g(k):

g(k) � g(0) + kg 0(0) + 1
2
k2g 00(0).

Substituting in, we get

π � 1
2
A(w0)k2Eex2 = 1

2
A(w0)Eey2.

The risk premium is proportional to the square of the risk. This property
of di¤erentiable utility is known as second-order risk aversion. It implies
that people are approximately risk-neutral with respect to small risks.
We also �nd that

C e � kµ� 1
2
A(w0)k2Eex2,

so a positive mean has a dominant e¤ect for small risks.

John Y. Campbell (Ec2723) Utility Theory and Risk Aversion September 2010 15 / 35



Risk Aversion The Arrow-Pratt Approximation

Relative Risks

De�ne a multiplicative risk by ew = w0(1+ kex) = w0(1+ ey). De�ne bπ as
the share of wealth one would pay to avoid this risk:

bπ = π(w0, u,w0kex)
w0

.

Then bπ � 1
2
w0A(w0)k2Eex2 = 1

2
R(w0)Eey2,

where R (w0) = w0A(w0) is the coe¢ cient of relative risk aversion.
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Risk Aversion Decreasing Absolute Risk Aversion

Decreasing Absolute Risk Aversion

The following conditions are equivalent:

π is decreasing in w0.

A(w0) is decreasing in w0.

�u0 is a concave transformation of u, so �u000/u00 � �u00/u0
everywhere. The ratio �u000/u00 = P has been called absolute
prudence by Kimball, who relates it to the theory of precautionary
saving.

Decreasing absolute risk aversion (DARA) seems intuitively appealing.
Certainly we should be uncomfortable with increasing absolute risk
aversion.
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Tractable Utility Functions

Tractable Utility Functions
Almost all applied theory and empirical work in �nance uses some member
of the class of linear risk tolerance (LRT) or hyperbolic absolute risk
aversion (HARA) utility functions. These are de�ned by

u(z) = ζ(η +
z
γ
)1�γ,

de�ned over z s.t. η + z/γ > 0.
For these utility functions, we get

T (z) =
1

A(z)
= η +

z
γ
,

which is linear in z , and

A(z) =
�

η +
z
γ

��1
,

which is hyperbolic in z .
John Y. Campbell (Ec2723) Utility Theory and Risk Aversion September 2010 18 / 35



Tractable Utility Functions

Important Special Cases

Quadratic utility has γ = �1. This implies increasing absolute risk
aversion and the existence of a bliss point at which u0 = 0. These
are important disadvantages, although quadratic utility is tractable in
models with additive risk.

Exponential or constant absolute risk averse (CARA) utility is the
limit as γ ! �∞. To obtain constant absolute risk aversion A, we
need

�u00(z) = Au0(z).
Solving this di¤erential equation, we get

u(z) =
� exp(�Az)

A
,

where A = 1/η. This form of utility is tractable with normally
distributed risks because then utility is lognormally distributed.
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Tractable Utility Functions

Important Special Cases
Power or constant relative risk averse (CRRA) utility has η = 0 and
γ > 0. Relative risk aversion R = γ. For γ 6= 1,

u(z) =
z1�γ

1� γ
.

For γ = 1,
u(z) = log(z).

Power utility is appealing because it implies stationary risk premia and
interest rates even in the presence of long-run economic growth. Also
it is tractable in the presence of multiplicative lognormally distributed
risks.

A negative η represents a subsistence level. Rubinstein has argued
for this model, but economic growth renders any �xed subsistence
level irrelevant in the long run. Models of habit formation have
time-varying subsistence levels which can grow with the economy.
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Rabin Critique

Rabin Critique

Matthew Rabin (2000) has argued that standard utility theory cannot
explain observed aversion to small gambles without implying ridiculous
aversion to large gambles. This follows from the fact that di¤erentiable
utility has second-order risk aversion.

To understand Rabin�s critique, consider a gamble that wins $11 with
probability 1/2, and loses $10 with probability 1/2. With diminishing
marginal utility, the utility of the win is at least 11u0(w0 + 11). The utility
cost of the loss is at most 10u0(w0 � 10). Thus if a person turns down
this gamble, we must have 10u0(w0 � 10) > 11u0(w0 + 11) which implies

u0(w0 + 11)
u0(w0 � 10)

<
10
11
.
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Rabin Critique

Rabin Critique

u0(w0 + 11)
u0(w0 � 10)

<
10
11
.

Now suppose the person turns down the same gamble at an initial wealth
level of w0 + 21. Then

u0(w0 + 21+ 11)
u0(w0 + 21� 10)

=
u0(w0 + 32)
u0(w0 + 11)

<
10
11
.

Combining these two inequalities,

u0(w0 + 32)
u0(w0 � 10)

<

�
10
11

�2
=
100
121

.

If this iteration can be repeated, it implies extremely small marginal utility
at high wealth levels, which would induce people to turn down apparently
extremely attractive gambles.
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Rabin Critique

Responses to Rabin Critique

1. As we increase wealth, a person will continue to turn down a given
absolute gamble inde�nitely only if absolute risk aversion is constant or
increasing. Rabin�s most extreme results assume this, and can be
understood as a critique of constant or increasing absolute risk aversion.

2. Observed aversion to small risks probably results from some other
aspect of human psychology besides declining marginal utility of wealth.
But this does not necessarily mean that we should abandon utility theory
for studying large risks in �nancial markets.
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Rabin Critique

Responses to Rabin Critique

3. What does explain the observed aversion to small risks? One simple
story would be that people su¤er �xed disutility from any loss, regardless
of size. More attractive are nonstandard preference models with
��rst-order risk aversion�, in which the premium paid to avoid a small loss
is proportional to the loss, not the squared loss. Such models have a kink
in the utility function at the initial level of wealth. Kahneman and
Tversky�s (1979) prospect theory has this feature.
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Rabin Critique

Responses to Rabin Critique

4. Barberis, Huang, and Thaler (2006) point out that even �rst-order risk
aversion cannot generate substantial aversion to small delayed gambles.
During the time between the decision to take a gamble and the resolution
of uncertainty, the agent will be exposed to other risks and will merge
these with the gamble under consideration. If the gamble is uncorrelated
with the other risks, it is diversifying. In e¤ect the agent will have
second-order risk aversion with respect to delayed gambles. To deal with
this problem, Barberis et al. argue that people treat gambles in isolation,
that is, they use �narrow framing�.

5. Chetty and Szeidl (2007) show that �consumption commitments�(�xed
costs to adjust a portion of consumption) raise risk aversion over small
gambles, relative to risk aversion over large gambles where extreme
outcomes would justify paying the cost to adjust all consumption.
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Comparing Risks

Comparing Risks

We would like to compare the riskiness of di¤erent distributions. Three
possible notions of increasing risk:

1) Something that all concave utility functions dislike.
2) More weight in the tails of the distribution.
3) Added noise.

The classic analysis of Rothschild and Stiglitz shows that these are all
equivalent. They are not equivalent to higher variance.
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Comparing Risks

Comparing Risks

Consider random variables eX and eY which have the same expectation.

1) eX is weakly less risky than eY if no individual with a concave utility
function prefers eY to eX :

E
h
u(eX )i � E hu(eY )i

for all concave u (.). eX is less risky (without quali�cation) if there is
some concave u(.) which strictly prefers eX .
Note that this is a partial ordering. It is not the case that for any eX andeY , either eX is weakly less risky than eY or eY is weakly less risky than eX .
We can get a complete ordering if we restrict attention to a smaller class
of utility functions than the concave, such as the quadratic.
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Comparing Risks

Comparing Risks

2) eX is less risky than eY if the density function of eY can be obtained from
that of eX by applying a mean-preserving spread (MPS). An MPS s(x) is
de�ned by

s (x) =

0BBBB@
α for c < x < c + t
�α for c 0 < x < c 0 + t
�β for d < x < d + t
β for d 0 < x < d 0 + t

0 elsewhere

1CCCCA
where α, β, t > 0 ; c + t < c 0 < d � t < d + t < d 0 ; and
α (c 0 � c) = β(d 0 � d), that is, �the more mass you move, the less far you
can move it.�
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Comparing Risks

Comparing Risks

An MPS is something you add to a density function f (x). If
g(x) = f (x) + s(x), then (i) g(x) is also a density function, and (ii) it
has the same mean as f (x).

(i) is obvious because
R
s (x) dx = area under s(x) = 0.

(ii) follows from the fact that the �mean�of s(x),
R
xs (x) = 0, which

follows from α(c 0 � c) = β(d 0 � d).

In what sense is an MPS a spread? It�s obvious that if the mean of f (x) is
between c 0+ t and d , then g(x) has more weight in the tails. It�s not so
obvious when the mean of f (x)is o¤ to the left or the right. Nevertheless,
we can show that eY with density g is riskier than eX with density f in the
sense of 1) above. In this sense the term �spread� is appropriate.
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Comparing Risks

Comparing Risks

3) A formal de�nition of �added noise� is that eX is less risky than eY if eY
has the same distribution as eX +eε, where E [eεjX ] = 0 for all values of X .
We say that eε is a �fair game�with respect to X .
This condition is stronger than zero covariance, Cov

�eε, eX� = 0. It is
weaker than independence, Cov

�
f (eε) , g �eX�� = 0 for all functions f

and g . It is equivalent to Cov
�eε, g �eX�� = 0 for all functions g .
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Comparing Risks

Comparing Risks

3) is su¢ cient for 1):

E
h
U(eX +eε)jX i � U(E

heX +eεjX i) = U (X )
) E

h
U(eX +eε)i � E hU(eX )i

) E
h
U(eY )i � E hU(eX )i

because eY and eX +eε have the same distribution.
In fact, Rothschild-Stiglitz show that 1), 2) and 3) are all equivalent. This
is a powerful result because one or the other condition may be most useful
in a particular application.
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Comparing Risks

Comparing Risks

Why are these not equivalent to eY having greater variance than eX? It is
obvious from 3) that if eY is riskier than eX then eY has greater variance
than eX . The problem is that the reverse is not true in general. Greater
variance is necessary but not su¢ cient for increased risk. eY could have
greater variance than eX but still be preferred by some concave utility
functions if it has more desirable higher-moment properties. This
possibility can only be eliminated if we con�ne attention to a limited class
of distributions such as the normal distribution.
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Comparing Risks

Stochastic Dominance
The following are de�nitions.

eX dominates eY if eY = eX + eξ, where eξ � 0.
eX �rst-order stochastically dominates eY if eY has the distribution ofeX + eξ, where eξ � 0. Equivalently, if F (.) is the cdf of eX and G (.) is the
cdf of eY , then eX �rst-order stochastically dominates eY if F (z) � G (z)
for every z . First-order stochastic dominance implies that every increasing
utility function will prefer eX .
eX second-order stochastically dominates eY if eY has the distribution ofeX + eξ +eε, where eξ � 0 and E [eεjX + ξ] = 0. Second-order stochastic
dominance implies that every increasing, concave utility function will prefereX . Increased risk is the special case of second-order stochastic dominance
where eξ = 0.
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Comparing Risks

Application: The Principle of Diversi�cation

Consider n lotteries with payo¤s ex1, ex2, ..., exn that are independent and
identically distributed (iid). You are asked to choose weights α1, α2, ....,
αn subject to the constraint that ∑i αi = 1. It seems obvious that the
best choice is complete diversi�cation, with weights αi = 1/n for all i .
The payo¤ is then ez = 1

n

n

∑
i=1
exi .
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Comparing Risks

Application: The Principle of Diversi�cation

To prove that this is optimal, note that the payo¤ on any other strategy is

∑
i

αiexi = ez +∑
i

�
αi �

1
n

�exi = ez +eε,
and

E [eεjz ] = ∑
i

�
αi �

1
n

�
E [exi jz ] = k∑

i

�
αi �

1
n

�
= 0.

Note that diversi�cation increases utility because you are averaging
independent risks. Adding independent risks does not have the same
e¤ect.
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