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Ordinal and Cardinal Utility

There is a basic contrast between:
e Ordinal utility Y(x) is invariant to monotonic transformations, so
Y(x) is equivalent to ©®(Y(x)) for any strictly increasing ©.

e Cardinal utility ¥(x) is invariant to positive affine (aka linear)
transformations, so ¥ (x) is equivalent to a+ b'¥(x) for any b > 0.

In finance we rely heavily on von Neumann-Morgenstern utility theory
which says that choice over lotteries, satisfying certain axioms, implies
maximization of the expectation of a cardinal utility function, defined over

outcomes.
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Reducing the Dimension of Utility

Finance theory generally works with low-dimensional arguments of the
utility function. Proceeding from greater to lesser generality:

Multiple goods, dates, and states (ordinal utility)

Multiple goods and dates, taking expectation over states (cardinal
utility)

Multiple dates only (one-good simplification)

Time-separable utility, adding up over dates (U(C) +6U(C) + ...)

Single-date utility U(Cy), which is equivalent to utility defined over
wealth U(W;).
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Utility Theory Jensen'’s Inequality

Jensen’s Inequality

Consider a random variable Z and a function f.

Definition: f is concave iff for all A € [0, 1] and values a, b,
Af(a) + (1= A)F(b) < F(Aa+ (1 — A)b).
If f is twice differentiable, then concavity implies that f” < 0.

Jensen’s Inequality: Ef (Z) < f(EZ) for all possible Z iff f is concave.
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Utility Theory Jensen'’s Inequality

Jensen’s Inequality and Risk Aversion

Jensen'’s Inequality: Ef (Z) < f(EZ) for all possible Z iff f is concave.

Definition: an agent is risk averse if he dislikes all zero-mean risk at all
levels of wealth. That is, for all wy and risk x with Ex = 0,

Eu(wp + %) < u(wp).

This is equivalent to
Eu(Z) < u(E2),

where Z = wy + X.

Thus risk aversion is equivalent to concavity of the utility function.
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Measuring Risk Aversion

A natural measure of risk aversion is f”, scaled to avoid dependence on
the units of measurement for utility. Absolute risk aversion A is defined by
_f//
f/

A=

Note that in general this is a function of the initial level of wealth.
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Comparing Risk Aversion

Let u; and uy have the same initial wealth. wu; is more risk-averse than u»
if up dislikes all lotteries that wu, dislikes, regardless of the common initial
wealth level.

Define ¢(x) = u1(uy *(x)). What are the properties of this function?
1. u1(z) = ¢(u2(2)), so ¢(.) turns uy into u.
2. ui(2) = ¢'(ux(2))uy(2), s0 @' = uj/uj > 0.
3. uf(2) = ¢'(12(2))uy (2) + <P”(U2(Z))UQ(Z)2. so
o = B ().

/2
uy
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Comparing Risk Aversion

4. Consider a risk x that is disliked by wu, that is a risk s.t.
Euy(wp + %) < u(wp). We have

Eup(wp +X) = Ep(ua(wo +X)) < p(Ewp(wp +X)) < ¢p(u2(wp)) = u1(wp)

for all X iff ¢ is concave or equivalently ¢ < 0. But then from property 3
we must have A; > As.
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Comparing Risk Aversion

5. The risk premium 7 is the amount one is willing to pay to avoid a pure
(zero-mean) risk. It solves

Eu(wp +X) = u(wy — 7).
Defining z = wy — 7t and y = 71 + X, this can be rewritten as
Eu(z+Yy) = u(2).

Now define 715 as the risk premium for agent 2, and define z, and y»
accordingly. We have

Ew(z +y2) = n(z).
If u; is more risk-averse than u,, then
Eu (2 +y2) < ui(2),

which implies 711 > 715.
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Comparing Risk Aversion

6. Consider a risk that may have a nonzero mean . It pays p + x where
X has zero mean. The certainty equivalent C€ satisfies

Eu(wo + p+X) = u(wy + C°).
This implies that
Cé(wo, u,p+X) =pu—rm(wo+u,uXx).

Thus if uy is more risk-averse than up, then Cf < C5.
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Comparing Risk Aversion

In summary, the following statements are equivalent:

uy is more risk-averse than ws.

uq is a concave transformation of wus.
Al > As.

71 2 TTo.

G <G,
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The Arrow-Pratt Approximation

Consider a pure risk y = kXx, where k is a scale factor. Write the risk
premium as a function g(k): g(k) = t(wp u, kX) satisfies

Eu(wyp + kx) = u(wp — g(k)).

Note that g(0) = 0.
Now differentiate w.r.t. k:

Exu'(wo + kx) = —g' (k)" (wo — g(k)).

Since Ex = 0, this implies that g’(0) = 0.
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The Arrow-Pratt Approximation

Differentiate w.r.t. k a second time:

B (wo + k) = g/ (k)0 (wo — g(k)) — " (k)1 (wo

which implies that

o
£'(0) = L) g2 p B2
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The Arrow-Pratt Approximation

Now take a Taylor approximation of g(k):
1
g(k) ~ g(0) + kg'(0) + S k*g" (0).
Substituting in, we get
1 o2 1 ~2
T~ §A(Wo)k Ex® = EA(WO)E)/ .

The risk premium is proportional to the square of the risk. This property
of differentiable utility is known as second-order risk aversion. It implies
that people are approximately risk-neutral with respect to small risks.
We also find that

C® ~ ky — %A(Wg)sziz,

so a positive mean has a dominant effect for small risks.
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Relative Risks

Define a multiplicative risk by w = wy(1 4+ kX) = wo(1+y). Define 7 as
the share of wealth one would pay to avoid this risk:

~ 7T(W(),U, Wokz)
m= ———""—

Wo
Then
T~

1 .
woA(wp)k*EX? = ER(WO)Ey2,

where R (wy) = wyA(w) is the coefficient of relative risk aversion.
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Decreasing Absolute Risk Aversion

The following conditions are equivalent:

@ 7T is decreasing in wy.

o A(wyp) is decreasing in wy.

e —u' is a concave transformation of u, so —u""'/u" > —u" /U
everywhere. The ratio —u"”'/u” = P has been called absolute
prudence by Kimball, who relates it to the theory of precautionary
saving.

Decreasing absolute risk aversion (DARA) seems intuitively appealing.
Certainly we should be uncomfortable with increasing absolute risk

aversion.
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Tractable Utility Functions

Tractable Utility Functions

Almost all applied theory and empirical work in finance uses some member
of the class of linear risk tolerance (LRT) or hyperbolic absolute risk
aversion (HARA) utility functions. These are defined by

u(z) =g+ ),

Y
defined over z s.t. y +2z/7v > 0.
For these utility functions, we get
1
T(@) = gy =1+,

which is linear in z, and

-1
z
A zZ) = + _) 1
@ = (1+2
which is hyperbolic in z.
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Tractable Utility Functions

Important Special Cases

@ Quadratic utility has v = —1. This implies increasing absolute risk
aversion and the existence of a bliss point at which v/ = 0. These
are important disadvantages, although quadratic utility is tractable in
models with additive risk.

e Exponential or constant absolute risk averse (CARA) utility is the
limit as ¢y — —oo. To obtain constant absolute risk aversion A, we
need

—u"(z) = AU (2).
Solving this differential equation, we get

—exp(—Az)
u(z) = —

where A =1/7. This form of utility is tractable with normally
distributed risks because then utility is lognormally distributed.
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Important Special Cases

e Power or constant relative risk averse (CRRA) utility has # = 0 and
v > 0. Relative risk aversion R = . For ¢ # 1,

zZ1=
u(z) = —
For v =1,
u(z) = log(z).

Power utility is appealing because it implies stationary risk premia and
interest rates even in the presence of long-run economic growth. Also
it is tractable in the presence of multiplicative lognormally distributed
risks.

@ A negative 77 represents a subsistence level. Rubinstein has argued
for this model, but economic growth renders any fixed subsistence
level irrelevant in the long run. Models of habit formation have
time-varying subsistence levels which can grow with the economy.
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Rabin Critique

Matthew Rabin (2000) has argued that standard utility theory cannot
explain observed aversion to small gambles without implying ridiculous
aversion to large gambles. This follows from the fact that differentiable
utility has second-order risk aversion.

To understand Rabin’s critique, consider a gamble that wins $11 with
probability 1/2, and loses $10 with probability 1/2. With diminishing
marginal utility, the utility of the win is at least 11u/(wp + 11). The utility
cost of the loss is at most 10u/(wy — 10). Thus if a person turns down
this gamble, we must have 10u/(wy — 10) > 11u/(wp + 11) which implies

u(wo+11) 10

u'(wp — 10) S
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Rabin Critique

Rabin Critique

u'(wo+11) 10

u'(wp —10) 117

Now suppose the person turns down the same gamble at an initial wealth
level of wg +21. Then

u(wg+21411) ' (wm+32) 10

u(wp+21—10)  u'(wp+11) DTS

Combining these two inequalities,

u'(wo+32) _ (10 2100
v (wp — 10) 11) 121

If this iteration can be repeated, it implies extremely small marginal utility
at high wealth levels, which would induce people to turn down apparently
extremely attractive gambles.
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Risk Aversion and Expected-Utility Theory: A Calibration Theorem
Matthew Rabin

Econometrica, Vol. 68, No. 5 (Sep., 2000), 1281-1292,



1284

IF AVERSE TO 50-50 Lose $100 / GAIN g BETS FOR ALL WEALTH LEVELS,
WiLe Turw Down 50-50 Lose L / GaiN G BETS; ('S ENTERED IN TABLE.

MATTHEW RABIN

TABLE ]

g

L £101 5103 3110 $125
£400 400 420 530 1,250
$600 600 730 990 oo
$300 800 1,050 2,090 o
$1,000 1,010 1,570 oo 00
$2,000 2,320 oo o0 oo
$4,000 5,750 oo o 0o
$6,000 11,810 o0 o o0
IE,ﬂﬂﬂ 34,94{] L e d -2
$10,000 e oo o &0
$20,000 = = 0 %




TABLEII

TaBLE | REPLICATED, FOR INITIAL WEALTH LEVEL $290,000,
WHEN [ /g BEHAVIOR 15 ONLY KNvown TO HoLp FOR w = $300,000.

g

L §101 $105 5110 §125

$400 400 420 550 1,250

$600 600 730 990 36,000,000,000

$800 800 1,050 2,090 90,000,000,000

$1,000 1,010 1,570 718,190 160,000,000,000
$2,000 2,320 69,930 12,210,880 £50,000,000,000
£4,000 5,750 635,670 60,528,930 9,400,000,000,000
£6,000 11,510 1,557,360 180,000,000 89,000, 000,000,000
£8,000 19,2690 3,058,540 510,000,000 £30,000,000,000,000
$10,000 27,780 5,203,790 1,300,000,000 7,700,000,000,000,000
$20,000 85,750 71,799,110 160,000, 000,000 540,000,000,000, 000,000,000




TABLE III

IF A PERsON Has CARA UTiLiTy FuNcTION AND IS AVERSE TO 50 /50 Losg ${ / Gain $g BETS FOR
ALL WEALTH LEVELS, THEN (i) SHE Has COEFFICIENT OF ABSOLUTE RISK AVERSION NO SMALLER
THAN p AND (i1) INVESTS X IN THE STOCK MARKET WHEN STOCK YIELDS ARE NORMALLY
DISTRIBUTED WITH MEAN REAL RETURN 6,49 AND STANDARD DEVIATION 209, AND BONDS

YIELD A RISKLESS RETURN OF (0.5%.

LS8 o X
$100 /5101 0000990 $14,899
$100 /$105 0004760 $3,009
$100 /%5110 L009084 $1,639
$100 /5125 0019917 741
$1{]{j}"$1 50 J032886 5449
$1,000 /$1,050 0000476 $30,087
$1,000 /$1,100 0000908 $16,389
$1,000/%1,200 0001662 $R8,886
$1,000 /$1,500 0003288 54,497
$1,000 /$2,000 D004812 $3,067
$10,000 /511,000 0000090 $163,889
$10,000,%12,000 000166 $88,855
$10,000,/$15,000 0000328 $44,970
$10,000 /$20,000 0000481 $30,665




Rabin Critique

Responses to Rabin Critique

1. As we increase wealth, a person will continue to turn down a given
absolute gamble indefinitely only if absolute risk aversion is constant or
increasing. Rabin’s most extreme results assume this, and can be
understood as a critique of constant or increasing absolute risk aversion.

2. Observed aversion to small risks probably results from some other
aspect of human psychology besides declining marginal utility of wealth.
But this does not necessarily mean that we should abandon utility theory
for studying large risks in financial markets.
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Rabin Critique

Responses to Rabin Critique

3. What does explain the observed aversion to small risks? One simple
story would be that people suffer fixed disutility from any loss, regardless
of size. More attractive are nonstandard preference models with
“first-order risk aversion”, in which the premium paid to avoid a small loss
is proportional to the loss, not the squared loss. Such models have a kink
in the utility function at the initial level of wealth. Kahneman and
Tversky's (1979) prospect theory has this feature.
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Responses to Rabin Critique

4. Barberis, Huang, and Thaler (2006) point out that even first-order risk
aversion cannot generate substantial aversion to small delayed gambles.
During the time between the decision to take a gamble and the resolution
of uncertainty, the agent will be exposed to other risks and will merge
these with the gamble under consideration. If the gamble is uncorrelated
with the other risks, it is diversifying. In effect the agent will have
second-order risk aversion with respect to delayed gambles. To deal with
this problem, Barberis et al. argue that people treat gambles in isolation,
that is, they use “narrow framing”.

5. Chetty and Szeidl (2007) show that “consumption commitments” (fixed
costs to adjust a portion of consumption) raise risk aversion over small
gambles, relative to risk aversion over large gambles where extreme
outcomes would justify paying the cost to adjust all consumption.
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QJE May 2007

CONSUMPTION COMMITMENTS AND RISK
PREFERENCES*

RaJ CHETTY AND ADAM SZEIDL

Many households devote a large fraction of their budgets to “consumption
commitments’—goods that involve transaction costs and are infrequently ad-
justed. This paper characterizes risk preferences in an expected utility model with
commitments. We show that commitments affect risk preferences in two ways: (1)
they amplify risk aversion with respect to moderate-stake shocks, and (2) they
create a motive to take large-payoff gambles. The model thus helps resolve two
basic puzzles in expected utility theory: the diserepancy between moderate-stake
and large-stake risk aversion and lottery playing by insurance buyers. We discuss
applications of the model such as the optimal design of social insurance and tax
policies, added worker effects in labor supply, and portfolio choice. Using event
studies of unemployment shocks, we document evidence consistent with the
consumption adjustment patterns implied by the model.



TABLE 1
EXPENDITURE SHARES AND ADJUSTMENT FREQUENCIES BY CONSUMPTION CATEGORY

Share of Fraction of households
total actively reducing
Consumption category expenditures consumption
Shelter (%) 22.2 8.7
Cars (excluding gas + maint) (%) 14.7 10.6
Apparel (%) 5.1 0.3
Furniture/appliances (%) 4.4 0.5
Health insurance (%) 3.0 32.9
Food and alcohol (%) 18.1 42.8
Utilities (%) 8.2 45.8
Other transportation (%) 7.3 49.2
Entertainment (%) 6.1 48.7
Out-of-pocket health (%) 3.0 47.8
Education (%) 2.0 45.2
Housing operations (%) 1.9 44.3
Personal care (%) 1.0 41.0
Tobacco (%) 0.9 36.6
Reading materials (%) 0.6 45.7
Miscellaneous (%) 1.5 39.3

Note: First column in table shows ageoregate expenditure shares for consumption categories in the CEX,
following methodology described in the Data Appendix. Second column reports fraction of households wheo
actively reduce consumption (beyond depreciation) of each category from first quarter to last quarter in CEX.
For apparel and furniture, households that reduce consumption are defined as those with negative net
expenditures. For all other categories, households that reduce expenditure are those with negative nominal
growth (g <= 0). See text and Data Appendix for the definition of g.;;. Categories above dotted line are
claszified as “commitments” by frequency-of-adjustment definition.



FIGURE II
Event Study of Consumption Around Unemployment Shocks

a. Renters
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b. Homeowners
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Period 1 value function v(W)

FIGURE Illa
Effect of Commitments on Value Function
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FIGURE IV

Risk Aversion Over Small versus Large Risks
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TABLE II
RISK PREFERENCES OVER SMALL AND LARGE STAKES: CALIBRATION RESULTS

(1) (2) (3) (4) (5) (6) (7) (8)
g = 1025 g = 1050 g = 1100 g = 1250

Loss (L) CREA Commit CREA Commit CRRA Commit CRRA Commit
100 100.2 100.2 100.5 100.5 101 101 102 102
200 201 201 204 202 204 204 208 208
500 506 506 524 512 524 524 555 5556
1000 1025 1025 1050 1050 1100 1100 1250 1250
2000 2103 2103 2211 2211 2446 2446 3373 3370
5000 5695 5695 6573 6570 9388 9359 o0 14879
10000 13243 13235 19615 19387 = 23388 oo 23841
15000 23805 23732 98027 29741 = 30149 = 30290
20000 39975 34003 oo 36660 = 37005 oo 37239
25000 69671 43003 oo 43860 oo 44388 oo 44746
30000 175622 50354 o0 51591 o 52360 w 52884
40000 oo 66569 oo 68897 e 70372 o 71393
50000 co 85166 oo 89184 o 91789 o 93623

Curvature over
food () 3.7 7.1 13.6 29.9
ERRA for L. =
50000

gamble 2.47 2.63 2.72 2.78




A special case. The following specification of utility yields a simple expression that 1s usetul 1n

calibrating the effect of commitments on risk aversion:

fl—ﬂ,.-'f El—f}-'m

6 fr) = ——
(6) u(fod) = T+ T,

From (3), the ratio of curvatures over wealth with and without adjustment costs at 11 is

~C -

(7) =142

Equation (7) shows that the commitment share of the budget i1s a key factor in determining how
much commitments magnity risk aversion over small shocks. When commitments constitute a
higher share of expenditures, shocks are concentrated on a smaller set of goods, and risk aversion
15 higher. When 7; > 7, the consumer is particularly risk averse over adjustable goods, increasing

the amplification effect.



Comparing Risks

Comparing Risks

We would like to compare the riskiness of different distributions. Three
possible notions of increasing risk:

1) Something that all concave utility functions dislike.
2) More weight in the tails of the distribution.
3) Added noise.

The classic analysis of Rothschild and Stiglitz shows that these are all
equivalent. They are not equivalent to higher variance.
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Comparing Risks

Consider random variables X and Y which have the same expectation.

1) X is weakly less risky than Y if no individual with a concave utility
function prefers Y to X:

E [uo?)] >E [u(?)]

for all concave u (.). X is less risky (without qualification) if there is
some concave u(.) which strictly prefers X.

Note that this is a partial ordering. It is not the case that for any X and
Y, either X is weakly less risky than YorYis weakly less risky than X.

We can get a complete ordering if we restrict attention to a smaller class
of utility functions than the concave, such as the quadratic.
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Comparing Risks

2) X is less risky than Y if the density function of ¥ can be obtained from
that of X by applying a mean-preserving spread (MPS). An MPS s(x) is
defined by

aforc<x<cH+t

—aforc <x<c+t

—Bford < x<d+t

Bford <x<d+t
0 elsewhere

s (x)

where a, B, t >0; c+t<c <d—t<d+t<d ;and

a(c"—c)=p(d" —d), that is, “the more mass you move, the less far you
can move it."

John Y. Campbell (Ec2723) Utility Theory and Risk Aversion
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Comparing Risks

An MPS is something you add to a density function f(x). If
g(x) = f(x) 4+ s(x), then (i) g(x) is also a density function, and (ii) it
has the same mean as f(x).

(i) is obvious because [ s (x) dx = area under s(x) = 0.

(ii) follows from the fact that the “mean” of s(x), [ xs (x) = 0, which
follows from a(c’ — ¢) = B(d' — d).

In what sense is an MPS a spread? It's obvious that if the mean of f(x) is
between ¢/ + t and d, then g(x) has more weight in the tails. It's not so
obvious when the mean of f(x)is off to the left or the right. Nevertheless,
we can show that Y with density g is riskier than X with density f in the
sense of 1) above. In this sense the term “spread” is appropriate.
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Comparing Risks

3) A formal definition of “added noise” is that X is less risky than Y if Y
has the same distribution as X + ¢, where E [¢|X] = 0 for all values of X.
We say that € is a “fair game” with respect to X.

This condition is stronger than zero covariance, Cov <§, )~(> =0. Itis

weaker than independence, Cov (f (€).g <§<)> = 0 for all functions f
and g. It is equivalent to Cov (E,g <)~(>> = 0 for all functions g.
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Comparing Risks

Comparing Risks

3) is sufficient for 1):
E [U(>~< +'5)|x} < U(E [x +z|x]) = U(X)
= E[UX+9)] <E[UX)]
= E [U(?)} <E [U(X)}
because Y and X + £ have the same distribution.
In fact, Rothschild-Stiglitz show that 1), 2) and 3) are all equivalent. This

is a powerful result because one or the other condition may be most useful
in a particular application.
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Comparing Risks

Comparing Risks

Why are these not equivalent to Y having greater variance than X7 ltis
obvious from 3) that if Y is riskier than X then Y has greater variance
than X. The problem is that the reverse is not true in general. Greater
variance is necessary but not sufficient for increased risk. Y could have
greater variance than X but still be preferred by some concave utility
functions if it has more desirable higher-moment properties. This
possibility can only be eliminated if we confine attention to a limited class
of distributions such as the normal distribution.
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Comparing Risks

Stochastic Dominance
The following are definitions.

X dominates Y if Y = X —I—E, where E <0.

X first-order stochastically dominates Y if Y has the distribution of

X + &, where (j < 0. Equivalently, if F(.) is the cdf of X and G(.) is the
cdf of ¥, then X first-order stochastically dominates Y if F(z) < G(z)
for every z. First-order stochastic dominance implies that every increasing
utility function will prefer X.

X second-order stochastically dominates Y if Y has the distribution of
X + & +¢ where ¢ <0 and E [€|X +¢] = 0. Second-order stochastic
dominance implies that every increasing, concave utility function will prefer
X. Increased risk is the special case of second-order stochastic dominance
where E =0.
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Application: The Principle of Diversification

Consider n lotteries with payoffs X1, X», ..., X, that are independent and
identically distributed (iid). You are asked to choose weights a1, ay, ....,
a, subject to the constraint that } ;a; = 1. It seems obvious that the
best choice is complete diversification, with weights a; = 1/n for all i.

The payoff is then
~ 1<
zZ= - Zx,-.
mis
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Comparing Risks

Application: The Principle of Diversification

To prove that this is optimal, note that the payoff on any other strategy is
(X,'},':’ZV—F a/—l f)?,':fZV—FE,
i i n
and
I

Effl =) (a;— %) E [%]2] = kZi:(oc,-— %) —o.

Note that diversification increases utility because you are averaging

independent risks. Adding independent risks does not have the same
effect.
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