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How Much Risk Should You Take?

The Principle of Participation

Consider the choice between one safe and one risky asset. An investor
with initial wealth w can invest in a safe asset with return r , or a risky
asset with return r + ex . Final wealth is

w(1+ r) + θex = w0 + θex ,
where θ is the dollar amount (not the share of wealth) invested in the risky
asset. The investor�s problem is

Maxθ V (θ) = Eu(w0 + θex).
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How Much Risk Should You Take?

The Principle of Participation

The �rst-order condition is

V 0(θ�) = Eexu0(w0 + θ�ex) = 0.
We have

V 0(0) = Eexu0(w0),
which has the same sign as Eex . The investment in the risky asset should
be positive if it has a positive expected return. This is true for any level
of risk aversion. Thus we cannot explain non-participation in risky asset
markets by risk aversion. We need �xed costs of participation or a kink in
the utility function that generates ��rst-order risk aversion�.
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How Much Risk Should You Take? Arrow-Pratt Approach

Portfolio Choice with a Small Risk

We consider a small risk ex = kµ+ ey
and assume k > 0. The �rst-order condition is

E(kµ+ ey)u0(w0 + θ�(k)(kµ+ ey)) = 0.
Di¤erentiating w.r.t. k,

µEu0(ew) + θ�(k)µE(kµ+ ey)u00(ew) + θ�0(k)E(kµ+ ey)2u00(ew) = 0.
Evaluating at k = 0,

θ�0(0) =
µ

Eey2 1
A(w0)

.
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How Much Risk Should You Take? Arrow-Pratt Approach

Portfolio Choice with a Small Risk

Then a Taylor expansion for the investment in the risky asset gives

θ�(k) � θ�(0) + kθ�0(0) =
Eex

E(ex � Eex)2 1
A(w0)

.

We can divide θ by wealth to �nd the share of wealth invested in the risky
asset. Call this α. We �nd

α�(k) =
θ�(k)
w0

� Eex
E(ex � Eex)2 1

R(w0)
.
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How Much Risk Should You Take? CARA Normal Case

Portfolio Choice in the CARA Normal Case

The above formula for dollars invested in the risky asset is exact when risk
is normal, ex � N(µ, σ2), and utility is CARA with risk aversion A. In this
case the problem becomes

Maxθ V (θ) = E[� exp(� A(w0 + θex))].
Utility is lognormally distributed (its log is normally distributed) if ex is
normally distributed. For any lognormal random variable ez , we have the
following extremely useful result:

logE(ez) = E log(ez) + 1
2

Var log(ez).

John Y. Campbell (Ec2723) Portfolio Choice (1) September 2010 6 / 25



How Much Risk Should You Take? CARA Normal Case

Portfolio Choice in the CARA Normal Case

The portfolio choice problem is equivalent to

Min log E [exp(� A(w0 + θex))] = �A(w0 + θµ) +
1
2
A2θ2σ2,

which is equivalent to

Max A(w0 + θµ)� 1
2
A2θ2σ2.

The solution is
θ� =

µ

Aσ2
,

independent of the initial level of wealth.
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How Much Risk Should You Take? CARA Normal Case

Portfolio Choice in the CARA Normal Case

This framework is very tractable:

It is easy to add multiple assets.

It is easy to handle additive background risk, arising from random
income or nontradable assets. Background risk does not a¤ect the
demand for tradable risky assets if it is uncorrelated with their returns.

Equilibrium with heterogeneous agents is easy to calculate because
the wealth distribution does not a¤ect the demand for risky assets.
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How Much Risk Should You Take? CARA Normal Case

Portfolio Choice in the CARA Normal Case

However there are also serious problems with this framework:

Wealth does not a¤ect the amount invested in a risky asset.

Growth in consumption and wealth with multiplicative risks implies
increasing absolute risks. CARA implies that this should generate an
upward trend in risk premia which we have not seen historically.

The assumption of normality cannot hold over more than one time
interval. The compounding of returns over many periods converts a
symmetric normal distribution into a right-skewed, non-normal
distribution.
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How Much Risk Should You Take? CRRA Lognormal Case

Portfolio Choice in the CRRA Lognormal Case
Assume that asset returns are lognormally distributed, and utility is power
with relative risk aversion γ. The maximization problem is

max EtW
1�γ
t+1 /(1� γ).

When γ < 1, this expectation is positive and maximizing it is equivalent
to maximizing its log. (When γ > 1, then we �ip sign, minimize the log,
and get the same solution.) Proceeding with the γ < 1 case, if
next-period wealth is lognormal, we can rewrite the problem as

max log EtW
1�γ
t+1 = (1� γ)Etwt+1 +

1
2
(1� γ)2σ2wt � log(1� γ),

where wt = log(Wt ). This has the same solution as

max Etwt+1 +
1
2
(1� γ)σ2wt .
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How Much Risk Should You Take? CRRA Lognormal Case

Portfolio Choice in the CRRA Lognormal Case

The budget constraint is

wt+1 = rp,t+1 + wt ,

where rp,t+1 = log(1+ Rp,t+1) is the log return on the portfolio. So we
can restate the problem as

max Et rp,t+1 +
1
2
(1� γ)σ2pt ,

where σ2pt is the conditional variance of the log portfolio return.
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How Much Risk Should You Take? CRRA Lognormal Case

Portfolio Choice in the CRRA Lognormal Case

To understand this, note that

Et rp,t+1 + σ2pt/2 = logEt (1+ Rp,t+1).

Thus we can equivalently write

max log Et (1+ Rp,t+1)�
γ

2
σ2pt .

The investor trades o¤ the log of the arithmetic mean return against the
variance of the log return, and the variance penalty is proportional to risk
aversion.
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How Much Risk Should You Take? CRRA Lognormal Case

Log Utility and the Growth-Optimal Portfolio

When γ = 1, the investor has log utility and chooses the growth-optimal
portfolio with the maximum log return.

When γ > 1, the investor seeks a safer portfolio by penalizing the
variance of log returns.

When γ < 1, the investor actually seeks a riskier portfolio because a
higher variance, with the same mean log return, corresponds to a
higher mean simple return.

The case γ = 1 is the boundary where these two opposing
considerations cancel.
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How Much Risk Should You Take? CRRA Lognormal Case

An Attractive Property of the Growth-Optimal Portfolio
The growth-optimal portfolio has the property that as the investment
horizon increases, it outperforms any other portfolio with increasing
probability.

The di¤erence between the log return on the growth-optimal portfolio
and the log return on any other portfolio is normally distributed with
a positive mean.
Assume that returns are iid over time.
Then as the horizon increases, the mean and variance of the excess
log return both grow linearly, so the ratio of mean to standard
deviation grows with the square root of the horizon.
The ratio of mean to standard deviation determines the probability
that the excess return is positive, which therefore increases with the
investment horizon.
Markowitz and others have used this to argue that long-term investors
should have log utility, but this claim has been strongly opposed by
Samuelson and others.
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How Much Risk Should You Take? CRRA Lognormal Case

Log Asset Returns and Log Portfolio Returns
Now we need to relate the log portfolio return to the log returns on
underlying assets. The simple return on the portfolio is a linear
combination of the simple returns on the risky and riskless assets. The log
return on the portfolio is the log of this linear combination, which is not
the same as a linear combination of logs.
Over short time intervals, however, we can use a Taylor approximation of
the nonlinear function relating log individual-asset returns to log portfolio
returns:

rp,t+1 � rf ,t+1 � αt (rt+1 � rf ,t+1) +
1
2

αt (1� αt )σ
2
t .

The di¤erence between the log portfolio return and a linear combination of
log individual-asset returns is given by αt (1� αt )σ2t /2 which is zero if
αt = 0 or 1. When 0 < αt < 1, the portfolio is a weighted average of the
individual assets and the term αt (1� αt )σ2t /2 is positive because the log
of an average is greater than an average of logs.
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How Much Risk Should You Take? CRRA Lognormal Case

Log Asset Returns and Log Portfolio Returns

Another way to understand this is to rewrite the equation as

rp,t+1 � rf ,t+1 +
σ2pt
2
� αt

�
rt+1 � rf ,t+1 +

σ2t
2

�
,

using the fact that σ2pt = α2t σ
2
t . This shows that the mean of the simple

excess portfolio return is linearly related to the mean of the simple excess
return on the risky asset.
Properties of this approximation:

It becomes more accurate as the time interval shrinks. It is exact in
continuous time with continuous paths for asset prices (then it follows
from Itô�s Lemma.).

It rules out bankruptcy, even with a short position (αt < 0) or
leverage (αt > 1).
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How Much Risk Should You Take? CRRA Lognormal Case

Back to the Portfolio Choice Problem

With two assets, the mean excess portfolio return is
Et rp,t+1 � rf ,t+1 = αt (Et rt+1 � rf ,t+1) + 1

2αt (1� αt )σ2t , while the
variance of the portfolio return is α2t σ

2
t . Substituting into the objective

function, we get

max αt (Et rt+1 � rf ,t+1) +
1
2

αt (1� αt )σ
2
t +

1
2
(1� γ)α2t σ

2
t .

The solution is

αt =
Et rt+1 � rf ,t+1 + σ2t /2

γσ2t
,

which is an exact version of the result for a small risk.
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Mean-Variance Analysis

Mean-Variance Analysis

Mean-variance analysis judges portfolios by their �rst two moments of
returns (a good starting point, but not the end of the story!)
In a static (single-period) model, this can be justi�ed by

Quadratic utility of wealth, or

Return distributions for which the �rst two moments are su¢ cient
statistics. E.g.

I Normal distribution
I Lognormal distribution (with short time intervals so that portfolio
returns and individual asset returns can both be lognormal)

I Multivariate t distribution
I Any of the above, plus an arbitrarily distributed common risk that does
not a¤ect portfolio choice.
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Mean-Variance Analysis

Mean-Variance Analysis

Along with assumptions on return distributions, we may also use utility
assumptions (e.g. CARA-normal, CRRA-lognormal) to get closed-form
portfolio rules. But these utility assumptions are not needed to justify
mean-variance analysis.
For tractability, we assume that short sales are permitted.
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Mean-Variance Analysis Two Assets

Two Risky Assets

Start with the choice between two risky assets with returns R1 and R2.

Rp = w1R1 + w2R2.

Rp = w1R1 + w2R2.

σ2p = Var(w1R1 + w2R2)

= w21Var(R1) + w22Var(R2) + 2w1w2Cov(R1,R2)
= w21 σ21 + w

2
2 σ22 + 2w1w2σ12

= w21 σ21 + w
2
2 σ22 + 2w1w2σ1σ2ρ12 ,

where ρ12 � Corr(R1,R2).
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Mean-Variance Analysis Two Assets

Two Risky Assets

Given a target Rp ,

w1 =
Rp � R2
R1 � R2

.

The variance of the portfolio return is

σ2p = w
2
1 σ21 + (1� w1)2σ22 + 2w1(1� w1)σ1σ2ρ12 .

This is a quadratic function of w1, and hence of Rp .

dσ2p
dw1

= 2w1σ21 � 2(1� w1)σ22 + 2(1� 2w1)σ12

= 2w1[σ21 + σ22 � 2σ12]� 2[σ22 � σ12] .

This derivative is increasing in w1.

John Y. Campbell (Ec2723) Portfolio Choice (1) September 2010 21 / 25



Risk-Return Plots



Mean-Variance Analysis Two Assets

Global Minimum-Variance Portfolio

To �nd the global minimum-variance portfolio with the smallest possible
variance, set the derivative to zero to get

wG 1 =
σ22 � σ12

σ21 + σ22 � 2σ12
, wG 2 =

σ21 � σ12
σ21 + σ22 � 2σ12

.
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Portfolio Standard Deviation



Mean-Variance Analysis Two Assets

Global Minimum-Variance Portfolio

Special cases:
1. When σ12 = 0, wG 1 = σ22/(σ

2
1 + σ22),

σ22
σ21+σ22

wG 2 = σ21/(σ
2
1 + σ22).

2. When σ21 = σ22, wG 1 = 1/2, wG 2 = 1/2.
3. When σ12 = σ1σ2 (so ρ12 = 1), the portfolio variance can be set to
zero by

wG 1 =
�σ2

σ1 � σ2
, wG 2 =

σ1
σ1 � σ2

.

4. When σ12 = �σ1σ2 (so ρ12 = �1), the portfolio variance can be set to
zero by

wG 1 =
σ2

σ1 + σ2
, wG 2 =

σ1
σ1 + σ2

.
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Mean-Variance Analysis Two Assets

One Risky, One Safe Asset

In this case σ22 = 0 and R2 = Rf , the riskless interest rate. We have
Rp � Rf = w1(R1 � Rf ) and σ2p = w

2
1 σ21 or w1 = σp/σ1. Hence

Rp � Rf = σp

�
R1 � Rf

σ1

�
.

This de�nes a straight line, called the capital allocation line (CAL), on a
mean-standard deviation diagram.
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Slope is
“Sharpe Ratio”

Risky asset

fR

R

σ

Capital Allocation Line



Mean-Variance Analysis Two Assets

Sharpe Ratio

The slope

S1 =
�
R1 � Rf

σ1

�
is called the Sharpe ratio of the risky asset. Any portfolio that combines a
single risky asset with the riskless asset has the same Sharpe ratio as the
risky asset itself.
The standard rule of myopic portfolio choice is

w1 =
R1 � Rf
RRAσ21

=
S1

RRAσ1
.
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