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Outline

Mean-variance analysis:

Multiple risky assets, no safe asset
I Lagrangian approach
I Global minimum-variance portfolio
I Mutual fund theorem

Multiple risky assets and one safe asset

Practical problems
I Do investors obey the mutual fund theorem?
I Is mean-variance analysis usable in practice?
I The need for shortcut approaches
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Multiple Risky Assets, No Safe Asset

Multiple Risky Assets, No Safe Asset

With two assets, the mean return target uniquely de�nes the portfolio
weights.
This is no longer true when we have N risky assets. Now the problem is
to �nd the �minimum-variance frontier�of portfolios that have minimum
variance for a given mean return.

R vector of mean returns,

Σ variance-covariance matrix of returns,

w vector of portfolio weights, and

ι vector of ones.
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Multiple Risky Assets, No Safe Asset Lagrangian Approach

The Lagrangian Approach

min
w

1
2
w 0Σw s.t.

R
0
w = Rp

ι0w = 1 .

Set up the Lagrangian

L(w ,λ1,λ2) =
1
2
w 0Σw + λ1(Rp � R

0
w) + λ2(1� ι0w)
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Multiple Risky Assets, No Safe Asset Lagrangian Approach

First-Order Conditions

L(w ,λ1,λ2) =
1
2
w 0Σw + λ1(Rp � R

0
w) + λ2(1� ι0w)

First-order conditions are

Σw = λ1R + λ2 ι .

Premultiply both sides by Σ�1 to get:

w = λ1Σ�1R + λ2Σ�1 ι .
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Multiple Risky Assets, No Safe Asset Lagrangian Approach

Solving for Lagrange Multipliers
Use the two constraints:

Rp = R
0
w = λ1R

0Σ�1R + λ2R
0Σ�1 ι = λ1A+ λ2B

1 = ι0w = λ1 ι
0Σ�1R + λ2 ι

0Σ�1 ι = λ1B + λ2C ,

where

A � R 0Σ�1R > 0
B � R 0Σ�1 ι = ι0Σ�1R
C � ι0Σ�1 ι > 0.

Solving these equations, we get

λ1 =
CRp � B

D
, λ2 =

A� BRp
D

,

where D � AC � B2.
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Multiple Risky Assets, No Safe Asset Lagrangian Approach

Minimized Variance

σ2p = w 0Σw = w 0Σ(λ1Σ�1R + λ2Σ�1 ι)

= λ1w 0R + λ2w 0ι = λ1Rp + λ2

=
A� 2BRp + CR

2
p

D
.

Thus dσ2p/dRp = λ1. λ1 measures the variance cost of a higher mean
return target, and it is increasing in Rp .
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Multiple Risky Assets, No Safe Asset Global Minimum-Variance Portfolio

Global Minimum-Variance Portfolio

Drop the mean constraint, or equivalently set λ1 = 0. We get

wG = λ2Σ�1 ι ,

1 = ι0wG = λ2 ι
0Σ�1 ι .

So λ2 = 1/(ι0Σ�1 ι) = 1/C , and

wG =
Σ�1 ι

ι0Σ�1 ι
.
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Multiple Risky Assets, No Safe Asset Global Minimum-Variance Portfolio

Mean GMV Portfolio Return

w 0GR =
�

ι0Σ�1R
ι0Σ�1 ι

�
=
B
C
.

We expect the mean return on the global minimum-variance portfolio to
be positive, and thus we expect B to be positive.

In the general model with an arbitrary mean return constraint, we can
verify that when Rp > B/C , then the Lagrange multiplier for the mean
constraint, λ1 > 0. The set of minimum-variance portfolios that satisfy
this condition is called the mean-variance e¢ cient set.
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Multiple Risky Assets, No Safe Asset Global Minimum-Variance Portfolio

Variance of GMV Portfolio Return

w 0GΣwG =
ι0Σ�1ΣΣ�1 ι
(ι0Σ�1 ι)2

=
1

(ι0Σ�1 ι)
.

This simpli�es in the case where all assets are symmetrical, having the
same variance and the same correlation ρ with each other. Then the
global minimum-variance portfolio is equally weighted, wG = ι/N, and

w 0GΣwG =
ι0Σι

N2
=
N2ρσ2

N2
+
N(1� ρ)σ2

N2

= ρσ2 +
(1� ρ)σ2

N
.
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Multiple Risky Assets, No Safe Asset Mutual Fund Theorem

Mutual Fund Theorem

Rewrite the solution as

w = λ1 ι
0Σ�1R

�
Σ�1R

ι0Σ�1R

�
+ λ2 ι

0Σ�1 ι
�

Σ�1 ι
ι0Σ�1 ι

�
= λ1B

�
Σ�1R

ι0Σ�1R

�
+ λ2CwG ,

Since λ1B + λ2C = 1, the optimal portfolio is a combination of two
portfolios, the second of which is the global minimum-variance portfolio,
and the �rst of which invests more heavily in assets with high mean
returns.
Tobin (1958): Two mutual funds are enough to meet all investors�needs.
Peter Bernstein: Any other view is the �interior decorator fallacy�.
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Multiple Risky Assets and One Safe Asset

Multiple Risky Assets and One Safe Asset

Write the riskless asset return as Rf . Rewrite the problem as one of
choosing weights w in the risky assets, where the portfolio is completed by
lending or borrowing at the riskless rate Rf . Thus we no longer require
ι0w = 1. Drop this constraint and write the problem as

min
w

1
2
w 0Σw s.t. (R � Rf ι)0w = (Rp � Rf ) .

Set up the Lagrangian

L(w1,w2,λ1) =
1
2
(w 0Σw) + λ1(Rp � Rf � (R � Rf ι)0w).
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Multiple Risky Assets and One Safe Asset

Solution

∂L
∂w

= Σw � λ1(R � Rf ι) = 0

so

w = λ1Σ�1(R � Rf ι) .

Mutual fund theorem: All investors hold a combination of the safe asset
and a unique mutual fund containing risky assets (the �tangency
portfolio�).
The weights are determined by the mean return target:

Rp � Rf = (R � Rf ι)0w = λ1(R � Rf ι)0Σ�1(R � Rf ι) = λ1E ,

where E � (R � Rf ι)0Σ�1(R � Rf ι). Thus

λ1 =
Rp � Rf
E

.
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Multiple Risky Assets and One Safe Asset

Solution

Also,

σ2p = w
0Σw = λ21(R � Rf ι)0Σ�1ΣΣ�1(R � Rf ι) = λ21E .

Thus

σ2p =
(Rp � Rf )2

E
,

and

j Rp � Rf j=
p
Eσp .

The Sharpe ratio of the tangency portfolio is
p
E .
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Practical Problems Do Investors Obey the Mutual Fund Theorem?

Do Investors Obey the Mutual Fund Theorem?

Canner-Mankiw-Weil (1997) "Asset Allocation Puzzle" is that investors
tend to shift the composition of the risky portfolio towards safer risky
assets when they become more conservative, rather than diluting a given
risky portfolio with more cash.
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Campbell, Calvet, and Sodini, JPE forthcoming, 2007

Figure 2B: Complete Portfolios
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FIGURE 3. IMPACT OF FINANCIAL SOPHISTICATION ON RETURN LOSS

The figure illustrates the impact of financial sophistication on the complete return loss. Rich and educated households select portfolios with a high Sharpe ratio
but also a high risky share, resulting in a high complete return loss. Conversely, unsophisticated households allocate a small fraction of their financial wealth to
an inefficient risky portfolio, and overall incur low complete portfolio return losses.



Practical Problems Is Mean-Variance Usable in Practice?

Is Mean-Variance Analysis Usable in Practice?

Estimates of means are imprecise over short periods.
I But means may not be constant over long periods.

The variance-covariance matrix Σ has N(N + 1)/2 variances and
covariances that have to be estimated. This can be a very large
number!

I If N � T , the historical variance-covariance matrix is always singular.
This means that it cannot be inverted. There will appear to be riskless
combinations of risky assets in the data.

I Even if N < T , if N is large the data will suggest that some
combinations of risky assets are almost riskless. This can lead to a
highly leveraged portfolio.

I DeMiguel, Garlappi, and Yan (2009) report better out-of-sample
properties for an equal-weighted portfolio (a naively diversi�ed
portfolio) than an estimated mean-variance optimal portfolio (but this
may be due to high return target).
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Practical Problems The Need for Shortcut Approaches

The Need for Shortcut Approaches

These di¢ culties have motivated a search for shortcut methods to
�nd optimal portfolios:

Capital Asset Pricing Model (CAPM).

Multifactor models.

These models also have broader implications:

Testable restrictions on asset returns.

Capital budgeting (what discount rate to use in evaluating investment
projects).

Mutual fund performance evaluation (how large a return should one
expect given the risk that a fund manager is taking).
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