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Complete Markets

Discrete-State Model with Complete Markets

Discrete-state model with states of nature s = 1...S .

Contingent claim price Pc (s) for $1 in state s, $0 otherwise.

All contingent claims exist so markets are complete.

Any other asset de�ned by payo¤s X (s) in state s, across s.

Law of One Price:

P(X ) =
S

∑
s=1

Pc (s)X (s).
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Complete Markets

The SDF in a Complete Market

P(X ) =
S

∑
s=1

Pc (s)X (s).

Multiply and divide by the probability of each state, π(s):

P(X ) =
S

∑
s=1

π(s)
Pc (s)
π(s)

X (s) =
S

∑
s=1

π(s)M(s)X (s) = E[MX ],

where M(s) = stochastic discount factor (SDF).
For now, assume that agents all agree on these state probabilities.
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Complete Markets

Riskless Interest Rate

Riskless asset has X (s) = 1 in every state. The price

Pf =
S

∑
s=1

Pc (s) =
S

∑
s=1

π(s)
Pc (s)
π(s)

= E[M ],

so the riskless interest rate

1+ Rf =
1
Pf
=

1
E[M ]

.
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Complete Markets

Risk-Neutral Probabilities

π�(s) = (1+ Rf )Pc (s) =
M(s)
E[M ]

π(s).

We have π�(s) > 0 and ∑s π�(s) = 1, so they can be interpreted as if
they were probabilities. We can rewrite the asset equation as

P(X ) =
�

1
1+ Rf

� S

∑
s=1

π�(s)X (s) =
�

1
1+ Rf

�
E�[X ].

The price of any asset is the pseudo-expectation of its payo¤, discounted
at the riskless interest rate.
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Complete Markets

Utility Maximization and the SDF

Consider an investor with initial wealth Y0 and income Y (s). The
investor�s maximization problem is

Max u(C0) +
S

∑
s=1

βπ(s)u(C (s))

subject to

C0 +
S

∑
s=1

Pc (s)C (s) = Y0 +
S

∑
s=1

Pc (s)Y (s).
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Complete Markets

Utility Maximization and the SDF

First-order conditions

u0(C0) = λ

βπ(s)u0(C (s)) = λPc (s) for s = 1...S .

where λ is Lagrange multiplier on budget constraint. Thus

M(s) =
Pc (s)
π(s)

=
βu0(C (s))
u0(C0)

=
βu0(C (s))

λ

and
M(s1)
M(s2)

=
u0(C (s1))
u0(C (s2))

.

The ratio of SDF realizations across states is the ratio of marginal utilities
across states. (Assumption: Common beliefs!)
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Complete Markets

Perfect Risksharing

Since this is true for any two investors i and j , we also have

u0i (C
i
t+1)

u0i (C
i
t )

=
u0j (C

j
t+1)

u0j (C
j
t )
,

assuming a common time discount factor β.Condition holds ex post, not
just ex ante, so is extremely strong: perfect risksharing.

This condition also characterizes the solution to the social planner�s
problem

Max λiE ∑
t

βtui (C it ) + λjE ∑
t

βtuj (C
j
t )

subject to C it + C
j
t = Ct . Allocation of consumption is Pareto optimal.
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Complete Markets

The Martingale Method

The above logic has been applied to solve portfolio choice problems. In a
model with only �nancial wealth and a single period,

C jt+1 = X
j
t+1,

where X jt+1 is the payo¤ on investor j�s portfolio. Given complete markets
there is a unique SDF Mt+1 such that

Mt+1 =
β

λj
u0j (X

j
t+1) =) X jt+1 = u

0�1
j

�
λj
β
Mt+1

�
.

We solve for the λj that makes the payo¤ X
j
t+1 a¤ordable at time t given

the investor�s current wealth. Then the investor holds a portfolio of
contingent claims that delivers X jt+1 at time t + 1. Cox and Huang
(1989).
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Complete Markets

Complete Markets and the Representative Agent

In complete markets, all agents have the same ordering of marginal utility,
and hence consumption, across states. So we can number states such that

C i (s1) � C i (s2) � ... � C i (sS )

for all agents i . De�ne aggregate consumption C (s) = ∑i C
i (s). Then

we have
C (s1) � C (s2) � ... � C (sS ).

Also, we have
M(s1) � M(s2) � ... � M(sS ).
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Complete Markets

Complete Markets and the Representative Agent
Now �nd a function g(C (s)) s.t.

g(C (sj ))
g(C (sk ))

=
M(sj )
M(sk )

for all states j and k. The above ordering conditions ensure that this is
always possible, with g > 0 and g 0 � 0. Finally, integrate to �nd a
function v(C (s)) s.t.

v 0(C (s)) = g(C (s)).

The function v(.) is the utility function of a representative agent who
consumes aggregate consumption and holds the market portfolio of all
wealth.
Market portfolio is e¢ cient (we can �nd a concave utility function that
prefers it).
But representative agent preferences need not relate to individual
preferences ("mongrel aggregation").
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Incomplete Markets

The SDF in Incomplete Markets

What if markets are incomplete? We continue to observe a set of payo¤s
X and prices P. The set of all payo¤s (the payo¤ space) is Ξ. We
assume:
(A1) Portfolio formation X1,X2 2 Ξ =) aX1 + bX2 2 Ξ for any real a, b.
(A2) Law of One Price P(aX1 + bX2) = aP(X1) + bP(X2).
Theorem. A1, A2 =) there exists a unique payo¤ X � 2 Ξ s.t.
P(X ) = E (X �X ) for all X 2 Ξ.
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Incomplete Markets

The SDF in Incomplete Markets

Theorem. A1, A2 =) there exists a unique payo¤ X � 2 Ξ s.t.
P(X ) = E (X �X ) for all X 2 Ξ.
Sketch of proof: Assume that there are N basis payo¤s X1, ...,XN .
Construct a vector X = [X1...XN ]0. Write the set Ξ = fc 0Xg. We want to
�nd some vector X � = c 0X that prices the basis payo¤s. That is, we want

P = E[X �X ] = E[XX 0c ]

which requires
c = E[XX 0]�1P

and
X � = P 0E[XX 0]�1X .

This construction for X � always exists and unique provided that the matrix
E[XX 0] is nonsingular.
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Incomplete Markets

The SDF in Incomplete Markets

We can subtract means and rewrite all of this in terms of covariance
matrices.

Only the SDF that is a linear combination of asset payo¤s is unique.
There may be many other SDF�s of the form M = X � + ε, where
E[εX ] = 0. These must all have higher variance than X �

(Hansen-Jagannathan variance bound).

X � is the projection of every SDF onto the space of payo¤s. Thus it
can be thought of as the portfolio of assets that best mimics the
behavior of every SDF.
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Incomplete Markets

The SDF in Incomplete Markets

De�nition. A payo¤ space Ξ and pricing function P(X ) have absence of
arbitrage if all X s.t. X � 0 always and s.t. X > 0 with positive
probability have P(X ) > 0.

Theorem. P = E (MX ) and M(s) > 0 =) absence of arbitrage.
Proof: P(X ) = ∑s π(s)M(s)X (s), and no terms in this expression are
ever negative.

Theorem. Absence of arbitrage =) 9M s.t. P = E (MX ) and M(s) > 0.
Proof: See Cochrane, Asset Pricing, Chapter 4, for a geometric proof.
The intuition is that with absence of arbitrage, we can always �nd a
complete-markets, contingent-claims economy (in general, many such
economies) that could have generated the asset prices we observe.
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Properties of the SDF The SDF and Risk Premia

The SDF and Risk Premia

For a general risky asset i , we have

Pit = Et [Mt+1Xi ,t+1] = Et [Mt+1]Et [Xi ,t+1] +Covt (Mt+1,Xi ,t+1)

=
Et [Xi ,t+1]
(1+ Rf ,t+1)

+Covt (Mt+1,Xi ,t+1).
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Properties of the SDF The SDF and Risk Premia

The SDF and Risk Premia

For assets with positive prices, we can divide through by Pit and use
(1+ Ri ,t+1) = Xi ,t+1/Pit to get

1 = Et [Mt+1(1+Ri ,t+1)] = Et [Mt+1]Et [1+Ri ,t+1] +Covt (Mt+1,Ri ,t+1)

Et [1+ Ri ,t+1] = (1+ Rf ,t+1)(1�Covt (Mt+1,Ri ,t+1)).

Et (Ri ,t+1 � Rf ,t+1) =
�Covt (Mt+1,Ri ,t+1 � Rf ,t+1)

EtMt+1
.
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Properties of the SDF The SDF and Risk Premia

The SDF and Risk Premia (Lognormal Version)

Assume joint lognormality of asset returns and the SDF. Log riskless rate
is

rf ,t+1 = �Etmt+1 � σ2mt/2,

where rf ,t+1 � log(1+ Rf ,t+1), mt+1 � log(Mt+1), and
σ2mt = Vart (mt+1).

Log risk premium with Jensen�s Inequality correction is

Et ri ,t+1 � rf ,t+1 + σ2i /2 = �σimt ,

where σimt �Cov t (ri ,t+1,mt+1).
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Properties of the SDF Volatility Bounds

Volatility Bounds on the SDF

Shiller (1982) considers a single risky asset:

Et (Ri ,t+1 � Rf ,t+1) =
�Covt (Mt+1,Ri ,t+1 � Rf ,t+1)

EtMt+1

� σt (Mt+1)σt (Ri ,t+1 � Rf ,t+1)
EtMt+1

.

σt (Mt+1)

EtMt+1
� Et (Ri ,t+1 � Rf ,t+1)

σt (Ri ,t+1 � Rf ,t+1)
.

Log version, assuming joint lognormality:

σmt �
Et ri ,t+1 � rf ,t+1 + σ2i /2

σit
.

Simple way to understand the equity premium puzzle.
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Properties of the SDF Volatility Bounds

Entropy and Cumulants
Alvarez-Jermann (2005), Backus-Chernov-Martin (2009). De�ne entropy
as

L(eX ) = logEeX � E log(eX ) � 0.
For a constant a, L(faX ) = L(eX ).
The cumulant-generating function of random variable x is

k(s; x) = logE[exp(sx)] =
∞

∑
j=1

κj (x)s j

j !
,

where the cumulants κj (x) are: κ1 = mean, κ2 = standard deviation,
κ3/κ3/2

2 = skewness, κ4/κ22 = excess kurtosis, etc.

L(eX ) = k(1; x)� κ1(x) =
∞

∑
j=2

κj (x)
j !

.
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Properties of the SDF Volatility Bounds

Entropy Bound on the SDF
In a �nite-state model, we have

M(s) = Pf
π�(s)
π(s)

.

If returns are iid, Pf is constant, so

L(M) = L
�

π�

π

�
= logE

�
π�

π

�
� E log

�
π�

π

�
= �E log

�
π�

π

�
.

The entropy of the SDF is then a measure of the deviation of π� from π.
Alvarez and Jermann (2005) show that

L(M) � E [rj � rf ].

A high log risk premium implies high entropy of the SDF, but this may be
due to higher moments rather than high variance of log SDF. ("Rare
disasters" literature.)
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Properties of the SDF Volatility Bounds

Entropy Bound on the SDF: Proof

1. Since E[M(1+ Rj )] = 1, Em+ Erj � logE[M(1+ Rj )] = 0. This
implies

Erj � �Em.

The weak inequality becomes an equality for the growth-optimal portfolio.
2. Allow for time-variation in the price of a riskless asset: P1t = EtMt+1.
The entropy of the riskless asset price is

L(P1) = logEP1 � Ep1 = logEM + Er1.

3. Putting these together,

L(M) = logEM � Em
� logEM + Erj
= L(P1) + E(rj � r1)
� E(rj � r1).
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Properties of the SDF Volatility Bounds

Hansen-Jagannathan Bounds

Hansen-Jagannathan (1991) extended Shiller volatility bound to multiple
risky assets.

Suppose there are N risky assets and no riskless asset, so the mean of the
SDF is not pinned down by the mean return on any asset. Write this
unknown mean SDF as M. The minimum-variance stochastic discount
factor is a linear combination of asset returns:

M�
t (M) = M + (Rt � R)0β(M)

for some coe¢ cient vector β(M). Any other SDF has a higher variance.
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Properties of the SDF Volatility Bounds

Hansen-Jagannathan Bounds

H-J use the fundamental equation of asset pricing,

ι = E [(ι+ Rt )Mt ],

to show that
Var(M�

t (M)) = AM
2 � 2BM + C ,

where A = (ι+ R)0Σ�1(ι+ R), B = ι0Σ�1(ι+ R), and C = ι0Σ�1 ι are
just as we de�ned them in the standard mean-variance analysis, except
with gross mean returns. Σ is the variance-covariance matrix of asset
returns.
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Properties of the SDF Volatility Bounds

The Benchmark Return
If we augment the set of risky asset returns with a hypothetical riskless
return 1/M, then we can de�ne a benchmark return

1+ Rbt (M) =
M�
t (M)

E [M�
t (M)2]

.

The benchmark return has the following properties:

It lies on the minimum-variance frontier (the lower part, not the
mean-variance e¢ cient frontier).

It has the highest possible correlation with the SDF.

Beta pricing works with the benchmark return:

1/M � (1+ Rb)
σb

� σM (M)

M
.

Elegant geometrical interpretation.
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Hansen and Jagannathan, JPE 1991



Properties of the SDF Factor Structure

Factor Structure of the SDF

Assume that the SDF is a linear combination of K common factors fk ,t+1,
k = 1...K . For simplicity assume that the factors have conditional mean
zero and are orthogonal to one another. If

Mt+1 = at �
K

∑
k=1

bkt fk ,t+1,

then

�Covt (Mt+1,Ri ,t+1 � Rf ,t+1) =
K

∑
k=1

bktσikt

=
K

∑
k=1

(bktσ
2
kt )

�
σikt
σ2kt

�
=

K

∑
k=1

λktβikt .
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Properties of the SDF Factor Structure

Factor Structure of the SDF

Note how this is consistent with earlier insights about multifactor models:

Single-period model with quadratic utility implies consumption equals
wealth and marginal utility is linear. Thus the SDF must be linear in
future wealth, or equivalently the market portfolio return.

In a single-period model with K common shocks and completely
diversi�able idiosyncratic risk, marginal utility and hence the SDF can
depend only on the common shocks.
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