
Present Value and Predictable Returns (3)

John Y. Campbell

Ec2723

September 2010

John Y. Campbell (Ec2723) Present Value and Predictable Returns (3) September 2010 1 / 24



Outline

Loglinear present value models.
I Campbell-Shiller return approximation
I VAR approach
I Illustrative model with AR(1) expected return

Predictive return regressions
I Long vs. short horizons

Persistent regressor problem
I Stambaugh bias
I Recent responses

John Y. Campbell (Ec2723) Present Value and Predictable Returns (3) September 2010 2 / 24



Loglinear Present Value Models

Loglinear Present Value Models

Last time we discussed linear present value models.

These have di¢ culty capturing time-varying discount rates, except in
special cases

I Linearity generating process with "twisted" AR(1)
I Drifting steady state model with random walk for log D/P

Loglinear approximation is an alternative way to capture the price
e¤ects of time-varying discount rates.
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Loglinear Present Value Models Campbell-Shiller Return Approximation

Campbell-Shiller Return Approximation

rt+1 = log(1+ Rt+1) = log(Pt+1 +Dt+1)� log(Pt )
= pt+1 � pt + log(1+ exp(dt+1 � pt+1)).

Approximate the nonlinear function

log(1+ exp(dt+1 � pt+1)) = f (dt+1 � pt+1)

as

f (dt+1 � pt+1) � f (d � p) + f 0(d � p)(dt+1 � pt+1 � (d � p)).

Here f (x) = log(1+ exp(x)) and f 0(x) = exp(x)/(1+ exp(x)).
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Loglinear Present Value Models Campbell-Shiller Return Approximation

Campbell-Shiller Return Approximation

We get
rt+1 � k + ρpt+1 + (1� ρ)dt+1 � pt ,

where
ρ =

1

1+ exp(d � p)
,

and
k = � log(ρ)� (1� ρ) log(1/ρ� 1).

Replace the log of a sum with an average of logs, where the relative
weights depend on the average relative magnitudes of dividend and
price.
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Loglinear Present Value Models Campbell-Shiller Return Approximation

Price Implications

rt+1 � k + ρpt+1 + (1� ρ)dt+1 � pt ,
Solve di¤erence equation forward, imposing terminal condition

lim
j�!∞

ρjpt+j = 0.

We get

pt =
k

1� ρ
+

∞

∑
j=0

ρj [(1� ρ)dt+1+j � rt+1+j ].

This is an approximate accounting identity. It holds ex post.

So it should hold in expectation, not just for RE but for all
expectations that respect identities.
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Loglinear Present Value Models Campbell-Shiller Return Approximation

Price Implications

pt =
k

1� ρ
+ Et

∞

∑
j=0

ρj [(1� ρ)dt+1+j � rt+1+j ] =
k

1� ρ
+ pCF ,t � pDR ,t .

pCF ,t is the component of the price due to cash �ow (dividend)
expectations

pDR ,t is the component due to discount rate (return) expectations.

What if log dividends follow a unit root process? Then we can subtract dt
from both sides:

dt � pt =
�k
1� ρ

+ Et
∞

∑
j=0

ρj [�∆dt+1+j + rt+1+j ].

dt � pt is stationary, so log dividends and prices are cointegrated,
with a known cointegrating vector.
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Loglinear Present Value Models Campbell-Shiller Return Approximation

An Earnings-Based Approach

Vuolteenaho (2002):

bt � vt = µ+ Et
∞

∑
j=0

ρj [�roet+1+j + rt+1+j ],

where vt is the log market value of the �rm and roet = log(1+ ROEt ).

This works well for studying individual �rms that may not have a
stable dividend policy.
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Loglinear Present Value Models Campbell-Shiller Return Approximation

Return Implications

Substitute price solution back into return approximation:

rt+1 � Et rt+1 = (Et+1 � Et )
∞

∑
j=0

ρj∆dt+1+j � (Et+1 � Et )
∞

∑
j=1

ρj rt+1+j

= NCF ,t+1 �NDR ,t+1.

NCF ,t is the revision in expectations (news) about current and future
cash �ows. (Sum starts at 0.)

NDR ,t is the revision in expectations (news) about future discount
rates. (Sum starts at 1.)

Surprising implication: Better information about future dividends
lowers the volatility of returns.
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Loglinear Present Value Models VAR Approach

VAR Approach

xt+1 = Axt + εt+1

for a vector xt with �rst element equal to return.

First-order VAR assumption not restrictive because higher-order VAR
can be rewritten in this form with an expanded state vector and a
singular variance-covariance matrix of innovations.

Then
Etxt+1+j = Aj+1xt .

rt+1 � Et rt+1 = e10εt+1,

where e10 = [10...0].
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Loglinear Present Value Models VAR Approach

VAR Approach

NDR ,t+1 = e1
0

∞

∑
j=1

ρjAjεt+1 = e10ρA(I � ρA)�1εt+1,

and

NCF ,t+1 = rt+1 � Et rt+1 +NDR ,t+1 = e10(I + ρA(I � ρA)�1)εt+1.

Decomposition is invariant to the inclusion of return rather than
dividend growth, provided that the system includes d � p. Why?
Decomposition is empirically insensitive to the inclusion of return
rather than dividend growth, if some other persistent valuation ratio
is included.

Decomposition is sensitive to the information variables in the VAR.
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Loglinear Present Value Models An Illustrative Model

An Illustrative Model

Warning: Change in notation! Scalar variable xt drives expected
return.

xt is an AR(1).

Et rt+1 = r + xt ,

xt+1 = φxt + ξt+1.

rt+1 = r + xt + ut+1.

John Y. Campbell (Ec2723) Present Value and Predictable Returns (3) September 2010 12 / 24



Loglinear Present Value Models An Illustrative Model

Price Implications

pDR ,t = Et
∞

∑
j=0

ρj rt+1+j =
r

1� ρ
+

xt
1� ρφ

.

Var(pDR ,t ) =
σ2x

(1� ρφ)2
,

The expected return may have a very small volatility yet may still
have a very large e¤ect on the stock price if it is highly persistent.

NDR ,t+1 = (Et+1 � Et )
∞

∑
j=1

ρj rt+1+j =
ρξt+1
1� ρφ

� ξt+1
1� φ

.

A 1% increase in the expected return today is associated with a
capital loss of about 2% if the AR coe¢ cient is 0.5, a loss of about
4% if the AR coe¢ cient is 0.75, and a loss of about 10% if the AR
coe¢ cient is 0.9.
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Loglinear Present Value Models An Illustrative Model

Back to Bob Shiller

This illustrates Bob Shiller�s point: �Returns on speculative assets are
nearly unforecastable; this fact is the basis of the most important
argument in the oral tradition against a role for mass psychology in
speculative markets. One form of this argument claims that because real
returns are nearly unforecastable, the real price of stocks is close to the
intrinsic value, that is, the present value with constant discount rate of
optimally forecasted future real dividends. This argument... is one of the
most remarkable errors in the history of economic thought�.

Discussion: What has the global �nancial crisis done to the reputation of
the e¢ cient market hypothesis?
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Loglinear Present Value Models An Illustrative Model

Return Autocovariance Implications

γi = Cov(rt+1, rt+1+i ) = φi�1
�
C +

�
φ

1� φ2
� ρ

1� ρφ

�
σ2ξ

�
,

where
C = Cov(ξt+1,NCF ,t+1).

Autocovariances are all of the same sign and die o¤ at rate φ.

Sign of autocovariances depends on three terms. How to interpret
them?

Autocovariances can all be zero, even if expected returns vary through
time. This shows that prices can be weak-form e¢ cient even if they
are not semi-strong form e¢ cient.

However for reasonable parameter values (C not strongly positive, φ
not too large), autocorrelations will tend to be negative.
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Predictive Return Regressions

Predictive Return Regressions

For simplicity, assume C = 0. Then the variance of the stock return is

Var(rt+1) = σ2CF + σ2x
1+ ρ2 � 2ρφ

(1� ρφ)2
� σ2CF +

2σ2x
1� φ

,

where σ2CF = Var(NCF ).
The R2 of a single-period return regression onto xt is

R2(1) =
Var(Et rt+1)
Var(rt+1)

� σ2x
σ2CF + 2σ2x/(1� φ)

=

�
σ2CF
σ2x

+
2

1� φ

��1
� 1� φ

2
.

When xt is extremely persistent, the one-period return regression must
have a low R2, even if there is no cash �ow news at all!
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Predictive Return Regressions

Long-Horizon Return Regressions

rt+1 + ...+ rt+K = β(K )xt ,

where

β(K ) = 1+ φ+ ...+ φK�1 =
1� φK

1� φ
.

The ratio of the K -period R2 to the 1-period R2 is

R2(K )
R2(1)

=

�
Var(Et rt+1 + ...+ Et rt+K )

Var(rt+1 + ...+ rt+K )

�
/
�

Var(Et rt+1)
Var(rt+1)

�
=

β(K )2

β(1)2
1

KV (K )
=

�
1� φK

1� φ

�2
1

KV (K )
.

This grows at �rst with K if φ is large, then eventually dies away to zero.
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Predictive Return Regressions

Long-Horizon Return Regressions

Much higher R2 statistics than short-horizon regressions.

The usual asymptotic t-statistics (with Newey-West correction for
overlapping observations) deliver stronger rejections.

However these t-statistics tend to have size distortions when the
overlap is large relative to the sample size, so the long-horizon
regression evidence is tenuous statistically.

Pastor and Stambaugh (2009) have recently argued for the use of a
�predictive system�, in which the AR(1) model for expected return is
combined with a vector of return predictors that are used to deliver
�ltered estimates of the unobservable expected return.
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The Persistent Regressor Problem The Problem

The Persistent Regressor Problem

Kendall (1954): �nite-sample bias in estimation of AR(1),

xt+1 = φxt + ξt+1,

is

E[bφ� φ] = �
�
1+ 3φ

T

�
+ o

�
1
T 2

�
.

This bias arises primarily because the mean of x is unknown and must
be estimated.
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The Persistent Regressor Problem The Problem

Stambaugh Bias

Stambaugh (1999): �nite-sample bias in one-period predictive regression

E[bβ� β] = γE[bφ� φ],

where γ = σuξ/σ2ξ , the regression coe¢ cient of the innovation to return
on the innovation to the predictor variable.
In the case where the dividend-price ratio is the predictor variable, we
expect γ < 0 so downward bias in bφ produces upward bias in bβ:

E[bβ� β] = �γ

�
1+ 3φ

T

�
=

ρ(1+ 3φ)

(1� ρφ)T
,

where the second equality holds for the case where C = 0.
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The Persistent Regressor Problem The Problem

Stambaugh Bias

There are similar problems with the distribution of the t-statistic
when φ is close to one (Cavanagh and Stock).

No problem when persistent regressor has innovations orthogonal to
asset returns (e.g. in�ation, interest rates predicting stock returns).

Reverse problem for case of excess bond returns regressed on yield
spread. Coe¢ cient is biased downwards rather than upwards. Why?

John Y. Campbell (Ec2723) Present Value and Predictable Returns (3) September 2010 21 / 24



Campbell and Yogo,
JFE 2006



The Persistent Regressor Problem Responses

Lewellen Response

Lewellen (2004): Condition on estimated persistence bφ and true
persistence φ:

E[bβ� β jbφ, φ] = γ[bφ� φ].

We do not know true φ, but Lewellen argues we know φ � 1 and
worst case is φ = 1.

He proposes the conservative approach of adjusting the estimated
coe¢ cient using this worst-case bias:

bβadj = bβ� γ(bφ� 1).
Adjusted coe¢ cient has variance σ2v/σ2x , where v is the residual in
the regression of u on ξ: u = γξ + v .
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The Persistent Regressor Problem Responses

Cochrane Response

Cochrane (2008): Use the fact that dt � pt does not forecast dividend
growth, "the dog that did not bark".

Campbell-Shiller approximation implies that if we regress rt+1, ∆dt+1,
and dt+1 � pt+1 onto dt � pt , the coe¢ cients β, βd , and φ are
related by

β = 1� ρφ+ βd .

If we have prior knowledge about φ, then β and βd are linked. For
example, if ρ = 0.96 and we know that φ � 1, then βd � β� 0.04. If
β = 0, then βd must be negative and less than �0.04.
If the dividend-price ratio fails to predict stock returns, it will be
explosive unless it predicts dividend growth. Since the dividend-price
ratio cannot be explosive, the absence of predictable dividend growth
strengthens the evidence for predictable returns.
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The Persistent Regressor Problem Responses

Campbell-Yogo Response
Campbell-Yogo (2006): If we knew persistence, we could reduce noise by
adding the innovation to the predictor variable to the predictive regression,
estimating

rt+1 = α0 + βxt + γ(xt+1 � φxt ) + vt+1.

The additional regressor, (xt+1 � φxt ) = ηt+1, is uncorrelated with
the original regressor xt but correlated with the dependent variable
rt+1. Thus we still get a consistent estimate of the original predictive
coe¢ cient β, but with increased precision because we have controlled
for some of the noise in unexpected stock returns.

Of course, in practice we do not know the persistence coe¢ cient φ,
but we can construct a con�dence interval for it by inverting a unit
root test.

The test delivers particularly strong evidence for predictability if we
rule out a persistence coe¢ cient φ > 1 on prior grounds.
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