Consumption-Based Asset Pricing (2)

John Y. Campbell

Ec2723

October 2010

Outline

- What if consumption is not lognormal?
 - ► Rietz (1988) "disaster risk" explanation for equity premium revived by Barro (2006)
 - ▶ Equity premium is high because higher moments contribute to risk
 - ► Martin (2010) treatment of asset pricing with iid consumption growth but arbitrary higher moments
- What if we relax the assumption of power utility that risk aversion is the reciprocal of the elasticity of intertemporal substitution?
 - ► Epstein-Zin (1989) preferences
 - Substituting out consumption or wealth to get CAPM+ and CCAPM+ models
 - Effects of persistent consumption growth and changing variance within a lognormal model
 - Concluding thoughts on time-varying disaster risk

Non-lognormal Consumption

- ullet Assume power utility with time discount factor δ and risk aversion γ .
- ullet Consider an asset that pays $D_t = \mathcal{C}_t^{\lambda}$.
- The parameter λ scales the volatility of dividends (a proxy for leverage).
 - When $\lambda = 0$, the asset is riskless.
 - ▶ When $\lambda = 1$, the asset is the aggregate wealth portfolio which pays aggregate consumption.

$$P_{t} = E_{t} \sum_{j=1}^{\infty} \delta^{j} \left(\frac{C_{t+j}}{C_{t}} \right)^{-\gamma} C_{t+j}^{\lambda}$$
$$= D_{t} E_{t} \sum_{j=1}^{\infty} \delta^{j} \left(\frac{C_{t+j}}{C_{t}} \right)^{\lambda-\gamma}.$$

- < □ > < □ > < 亘 > < 亘 > □ ■ 9 < ©

Non-lognormal Consumption

- Define $\delta = \exp(-r^*)$, so r^* is the pure rate of time preference.
- ullet Assume iid consumption growth and define $G=c_{t+1}-c_t$.

$$P_{t} = D_{t} E_{t} \sum_{j=1}^{\infty} \delta^{j} \left(\frac{C_{t+j}}{C_{t}} \right)^{\lambda - \gamma}$$

$$= D_{t} \sum_{j=1}^{\infty} \exp(-r^{*}j) E[(\exp(\lambda - \gamma)G)^{j}].$$

Cumulant Generating Function

The cumulant generating function for any random variable G is the log of the moment generating function:

$$c(\theta) = \log E \exp(\theta G).$$

(Note *c* does not refer to log consumption here!) Important property:

$$c(\theta) = \sum_{n=1}^{\infty} \frac{\kappa_n \theta^n}{n!},$$

where κ_n is the *n*'th cumulant of *G*.

- Here, κ_1 is the mean of log consumption growth, κ_2 is the variance σ^2 , κ_3/σ^3 is the skewness, κ_4/σ^4 is the excess kurtosis, and so forth.
- All cumulants above the second are zero when log consumption growth is normal.
- c(0) = 0 and c(1) is the log of the mean of simple gross consumption growth.

Dividend-Price Ratio

$$P_t = D_t \sum_{j=1}^{\infty} \exp(-r^*j) \mathbb{E}[(\exp(\lambda - \gamma)G)^j]$$

$$= D_t \sum_{j=1}^{\infty} \exp[-(r^* - c(\lambda - \gamma))j]$$

$$= D_t \frac{\exp[-(r^* - c(\lambda - \gamma))]}{1 - \exp[-(r^* - c(\lambda - \gamma))]}.$$

Define $d/p = \log(1 + D_t/P_t)$, the log gross dividend yield. Then

$$d/p = r^* - c(\lambda - \gamma).$$

Special case: when $\lambda=1$, we have a consumption claim and

$$c/w = r^* - c(1-\gamma) = r^* - \sum_{n=1}^{\infty} \frac{\kappa_n (1-\gamma)^n}{n!}.$$

Gross Return

The gross return on the asset is

$$1 + R_{t+1} = \frac{P_{t+1}}{P_t} \left(1 + \frac{D_{t+1}}{P_{t+1}} \right)$$
$$= \frac{D_{t+1}}{D_t} \exp(r^* - c(\lambda - \gamma)).$$

Thus the expected gross return is

$$1 + ER_{t+1} = E \exp(G\lambda) \exp(r^* - c(\lambda - \gamma))$$

= $\exp(r^* - c(\lambda - \gamma) + c(\lambda)).$

Define $er = \log(1 + ER_{t+1})$, the log of the expected gross return. Then

$$er = r^* - c(\lambda - \gamma) + c(\lambda).$$

Equity Premium

$$er = r^* - c(\lambda - \gamma) + c(\lambda).$$

Special cases:

• When $\lambda = 0$, we have a riskless asset and

$$r_f = r^* - c(-\gamma) = r^* - \sum_{n=1}^{\infty} \frac{\kappa_n(-\gamma)^n}{n!}.$$

ullet When $\lambda=1$, we have a consumption claim and

$$er = r^* - c(1 - \gamma) + c(1).$$

 The risk premium on the consumption claim (the equity premium) is the difference:

$$rp = c(1) + c(-\gamma) - c(1-\gamma) = \sum_{n=2}^{\infty} \frac{\kappa_n}{n!} \left\{ 1 + (-\gamma)^n - (1-\gamma)^n \right\}.$$

These results generalize the familiar lognormal formulas to allow for the influence of higher moments.

Gordon Growth Model

Putting these results together, we have a Gordon growth model,

$$dp = er - c(\lambda)$$
.

In the case of the consumption claim,

$$c/w = r_f + rp - c(1).$$

Figure 1: Left: The CGF in equation (18) shown with and without ($\omega = 0$) jumps. The figure assumes that $\gamma = 4$. Right: Zooming out to see the equity premium and riskless rate puzzles. The dashed box in the upper right-hand corner indicates the region plotted in Figure 1a.

Figure 2: The risk premium. The figure assumes that $\gamma=4$.

	ω	b	s	R_f	C/W	RP	R_f^*	C/W^*	RP^*
Baseline case	0.017	0.39	0.25	1.0	4.8	5.7	-0.9	2.8	5.7
High ω	0.022			-2.4	3.1	7.4	-2.5	3.0	7.4
Low ω	0.012			4.5	6.4	4.1	0.7	2.6	4.1
High b		0.44		-1.9	3.6	7.5	-2.6	2.9	7.5
Low b		0.34		3.5	5.8	4.4	0.4	2.7	4.4
High s			0.30	-2.2	3.8	8.1	-3.1	2.9	8.1
Low s			0.20	3.2	5.5	4.2	0.5	2.7	4.2

Table I: The impact of different assumptions about the distribution of disasters. $\tilde{\mu}=0.025$, $\sigma=0.02$. Unasterisked group assumes power utility, $\rho=0.03$, $\gamma=4$. Asterisked group assumes Epstein-Zin preferences, $\rho=0.03$, $\gamma=4$, $\psi=1.5$.

n	R_f	C/W	RP	
1	10.3	8.5	0.0	deterministic
2	7.1	6.7	1.6	lognormal
3	4.7	5.7	3.0	
4	3.0	5.1	4.1	
∞	1.0	4.8	5.7	true model

Table II: The impact of approximating the disaster model by truncating at the nth cumulant. All parameters as in baseline power utility case of Table I.

Epstein-Zin Preferences

$$U_{t} = \left\{ (1 - \delta) C_{t}^{\frac{1 - \gamma}{\theta}} + \delta \left(E_{t} U_{t+1}^{1 - \gamma} \right)^{\frac{1}{\theta}} \right\}^{\frac{\theta}{1 - \gamma}},$$

where $\theta \equiv (1 - \gamma)/(1 - 1/\psi)$.

- Here γ is risk aversion and ψ is the elasticity of intertemporal substitution.
- When $\gamma=1/\psi$, $\theta=1$ and the recursion becomes linear; it can then be solved forward to yield the familiar time-separable power utility model.

Euler Equation

Assume intertemporal budget constraint

$$W_{t+1} = (1 + R_{w,t+1}) (W_t - C_t).$$

Then we get an Euler equation

$$1 = \mathrm{E}_t \, \left[\left\{ \delta \left(rac{C_{t+1}}{C_t}
ight)^{-rac{1}{\psi}}
ight\}^{ heta} \left\{ rac{1}{(1+R_{w,t+1})}
ight\}^{1- heta} \left(1+R_{i,t+1}
ight)
ight].$$

- Different from power utility because the Euler equation depends on the form of the intertemporal budget constraint.
- All assets must be tradable and included in wealth.

Lognormal Version of Epstein-Zin Model

If asset returns and consumption are homoskedastic and jointly lognormal,

$$\begin{split} r_{f,t+1} &= -\log \delta + \frac{1}{\psi} \operatorname{E}_t[\Delta c_{t+1}] + \frac{\theta - 1}{2} \, \sigma_w^2 - \frac{\theta}{2\psi^2} \, \sigma_c^2. \\ &\operatorname{E}_t[r_{i,t+1}] - r_{f,t+1} + \frac{\sigma_i^2}{2} = \theta \, \frac{\sigma_{ic}}{\psi} + (1 - \theta) \sigma_{iw}. \end{split}$$

- The Epstein-Zin model nests the consumption CAPM with power utility $(\theta=1)$ and the traditional static CAPM $(\theta=0)$.
- ullet But can we treat σ_{ic} and σ_{iw} as independently measurable quantities?

Approximate Budget Constraint

$$r_{w,t+1} - E_t r_{w,t+1} = (E_{t+1} - E_t) \sum_{j=0}^{\infty} \rho^j \Delta d_{w,t+1+j}$$

$$-(E_{t+1} - E_t) \sum_{j=1}^{\infty} \rho^j r_{w,t+1+j}.$$

- \bullet $d_{w,t} = c_t$
- $E_t r_{w,t+1} = (1/\psi) E_t [\Delta c_{t+1}]$

$$\begin{split} r_{w,t+1} - \mathbf{E}_t \, r_{w,t+1} &= & \left(\Delta c_{t+1} - \mathbf{E}_t \Delta c_{t+1} \right) \\ &+ \left(1 - \frac{1}{\psi} \right) \left(\mathbf{E}_{t+1} - \mathbf{E}_t \right) \sum_{j=1}^{\infty} \rho^j \Delta c_{t+1+j} \; . \end{split}$$

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 夕 Q (C)

Substituting Out Consumption

$$\begin{split} \Delta c_{t+1} - \mathrm{E}_t \, \Delta c_{t+1} &= r_{w,t+1} - \mathrm{E}_t r_{w,t+1} \\ &+ (1 - \psi) (\mathrm{E}_{t+1} - \mathrm{E}_t) \sum_{j=1}^{\infty} \rho^j r_{w,t+1+j}. \\ \\ \sigma_{ic} &= \sigma_{iw} + (1 - \psi) \sigma_{ih}, \\ \\ \sigma_{ih} &\equiv \mathrm{Cov}(r_{i,t+1} - \mathrm{E}_t r_{i,t+1}, (\mathrm{E}_{t+1} - \mathrm{E}_t) \sum_{i=1}^{\infty} \rho^j r_{w,t+1+j}). \end{split}$$

Substituting Out Consumption

$$\mathrm{E}_{t}[r_{i,t+1}] - r_{f,t+1} + \frac{\sigma_{i}^{2}}{2} = \gamma \sigma_{iw} + (\gamma - 1)\sigma_{ih}.$$

- Call this "CAPM+", because it nests the CAPM and adds aversion to changing investment opportunities.
- We get CAPM when $\gamma = 1$ (myopic asset demand).
- The EIS ψ plays no direct role.
- Empirical implementation of Merton (1973) intertemporal CAPM (ICAPM) due to Campbell (1993).

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト 9 Q (^

Substituting Out Wealth

$$\begin{split} \sigma_{iw} &= \sigma_{ic} + \left(1 - \frac{1}{\psi}\right) \sigma_{ig}, \\ \sigma_{ig} &\equiv \text{Cov}(r_{i,t+1} - E_t r_{i,t+1}, (E_{t+1} - E_t) \sum_{j=1}^{\infty} \rho^j \Delta c_{t+1+j}). \\ E_t[r_{i,t+1}] - r_{f,t+1} + \frac{\sigma_i^2}{2} &= \gamma \sigma_{ic} + \left(\gamma - \frac{1}{\psi}\right) \sigma_{ig}. \end{split}$$

- Call this "CCAPM+", because it nests the CCAPM and adds aversion to fluctuations in long-run consumption growth.
- ullet We get CCAPM when $\gamma=1/\psi$ (power utility).
- Formula originally derived by Restoy and Weil (1998).

Long-Run Risk Model

- Bansal and Yaron (2004) "long-run risk" model applies CCAPM+ approach to the equity premium and equity volatility puzzles.
- Initial emphasis on persistent shocks to consumption growth.
- Also adds changing variance, which turns out to be key.
- Bansal, Kiku, and Yaron (2007) boost the effect of changing variance and achieve greater empirical success.
- Beeler and Campbell (2009) take the other side in a debate over the empirical merits of this framework.

Persistent Consumption Growth

$$\begin{split} r_{w,t+1} - \mathbf{E}_t \, r_{w,t+1} &= (\Delta c_{t+1} - \mathbf{E}_t \Delta c_{t+1}) \\ &+ \left(1 - \frac{1}{\psi}\right) (\mathbf{E}_{t+1} - \mathbf{E}_t) \sum_{j=1}^{\infty} \rho^j \Delta c_{t+1+j} \; . \\ \mathbf{E}_t [r_{i,t+1}] - r_{f,t+1} + \frac{\sigma_i^2}{2} &= \gamma \sigma_{ic} + \left(\gamma - \frac{1}{\psi}\right) \sigma_{ig} . \end{split}$$

Assume shocks to c and g are uncorrelated. Then

$$\mathrm{E}_{t}[r_{w,t+1}] - r_{f,t+1} + \frac{\sigma_{w}^{2}}{2} = \gamma \sigma_{c}^{2} + \left(\gamma - \frac{1}{\psi}\right) \left(1 - \frac{1}{\psi}\right) \sigma_{g}^{2}.$$

The second term is positive if $\psi > 1$.

Persistent Consumption Growth: Another Story

- Other authors have argued that consumption responds sluggishly to shocks because of adjustment costs.
- Thus short-run consumption covariance understates risk.
- Example: Gabaix-Laibson (NBER Macro Annual 2001).
 - Agents update consumption every D periods, and the distribution of update times is uniform.
 - So every period, 1/D of agents adjust.
 - ▶ Household that adjusts at time $i \in [0,1]$ can react to fraction i of information in the period, and affects fraction (1-i) of consumption.
 - Downward bias in sensitivity of consumption to news is

$$\int_{0}^{1} i(1-i) = \left[\frac{i^{2}}{2} - \frac{i^{3}}{3}\right]_{0}^{1} = \frac{1}{6}.$$

▶ Since only 1/D of agents adjust at all, we get 1/6D bias in consumption sensitivity, and 6D bias in estimated risk aversion.

Persistent Consumption Growth: Another Story

- This story implies that
 - Aggregate consumption growth is positively autocorrelated as agents gradually adjust to news
 - Covariance of consumption growth and stock returns is increasing with the horizon
 - Long-run consumption reveals high true risk, which is obscured at short horizons.
- Empirically, there is some short-run autocorrelation of consumption growth
 - Probably related to time-averaging of consumption
 - ▶ Working (1960): time-average of a Brownian motion (random walk) is an MA(1) in changes with coefficient 0.25.

Persistent Consumption Growth: Another Story

- Empirically, stock returns lead consumption growth by one quarter which may result from time-averaging and short delays in consumption
 - "Beginning of period" timing convention for consumption vs. "end of period" convention
- There is a difference between $Cov(r_{t+1}, c_{t+h} c_t)$ and $Cov(r_{t+1} + ... + r_{t+h}, c_{t+h} c_t)$.
 - ▶ The former increases with *h* more strongly than the latter.
 - ► The reason is that consumption growth predicts future stock returns negatively.

Changing Variance

Consider a simple case where c_t follows a random walk with drift:

$$\Delta c_t = g + \varepsilon_t$$
.

The expected return on the wealth portfolio is

$$E_t r_{w,t+1} = -\ln \delta + \frac{g}{\psi} - \frac{\sigma^2}{2} \left(1 - \frac{1}{\psi} \right) (1 - \gamma).$$

Now use the expression

$$\rho_{it} - d_{it} = \frac{k}{1 - \rho} + E_t \sum_{j=0}^{\infty} \rho^j [\Delta d_{i,t+1+j} - r_{i,t+1+j}].$$

Set i = w, $d_{wt} = c_t$, and use the above expression for the return on wealth. We get

$$p_{wt} - d_{wt} = {\rm constant} + \left(\frac{1}{1-\rho}\right)\left(1 - \frac{1}{\psi}\right)\left(g + \frac{\sigma^2}{2}(1-\gamma)\right).$$

Changing Variance

$$ho_{wt} - d_{wt} = {
m constant} + \left(rac{1}{1-
ho}
ight) \left(1 - rac{1}{\psi}
ight) \left(g + rac{\sigma^2}{2}(1-\gamma)
ight).$$

- Let's hold g constant while σ^2 increases. What does it take for consumption claim price to fall?
- We need $(1-1/\psi)$ and $(1-\gamma)$ to have opposite signs, so we need ψ and γ on the same side of one. Inconsistent with power utility.
- Intuition:
 - ► An increase in volatility with unchanged geometric mean consumption growth is an improvement in investment opportunities if $\gamma < 1$ and a deterioration if $\gamma > 1$.
 - If $\psi > 1$, an improvement in investment opportunities causes agents to desire lower consumption relative to wealth, driving up wealth for given consumption. If $\psi < 1$, the opposite occurs.
 - Putting these together, we need ψ and γ to be on the same side of one to get wealth to fall when volatility increases.

23 / 25

Changing Variance

$$ho_{wt} - d_{wt} = {
m constant} + \left(rac{1}{1-
ho}
ight) \left(1 - rac{1}{\psi}
ight) \left(g + rac{\sigma^2}{2}(1-\gamma)
ight).$$

- Let's hold arithmetic mean consumption growth, $g + \sigma^2/2$, constant while σ^2 increases. What does it take for consumption claim price to fall?
- We need $(1-1/\psi) > 0$, that is we need $\psi > 1$.
- Intuition:
 - An increase in volatility with unchanged arithmetic mean consumption growth is a deterioration in investment opportunities for any risk-averse consumer.
 - If $\psi > 1$, a deterioration in investment opportunities causes agents to desire higher consumption relative to wealth, driving down wealth for given consumption.
- The intuition that volatility drives down wealth is the most powerful argument for $\psi > 1$.

- (ロ)(回)(回)(E)(E)(E)(O)

Asset Volatility and Disaster Risk

- Disaster-risk explanation for equity volatility is that the perceived probability of disaster, or the consequences of disaster for asset holders (the recovery rate or asset "resilience"), change over time.
- If disasters are interpreted as wars, the timing of asset price movements seems off, at least in the last 50 years.
- Changes in resilience are hard to measure.
- An alternative approach: combine disaster risk with limited participation, and interpret disaster as political expropriation.

Source: Robert Shiller, "Low Interest Rates and High Asset Prices", 2007, using Global Financial Database

Doomsday Clock: Minutes to Midnight

Where Next?

- Example: UK 1974 miners' strike, 3-day week, fall of Conservative government
- Spike in labor share (Bottazzi, Pesenti, and van Wincoop, EER 1996), and uncertainty about future of UK capitalism

