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Outline

What if consumption is not lognormal?
I Rietz (1988) "disaster risk" explanation for equity premium revived by
Barro (2006)

I Equity premium is high because higher moments contribute to risk
I Martin (2010) treatment of asset pricing with iid consumption growth
but arbitrary higher moments

What if we relax the assumption of power utility that risk aversion is
the reciprocal of the elasticity of intertemporal substitution?

I Epstein-Zin (1989) preferences
I Substituting out consumption or wealth to get CAPM+ and CCAPM+
models

I E¤ects of persistent consumption growth and changing variance within
a lognormal model

I Concluding thoughts on time-varying disaster risk
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Non-lognormal consumption Basic Setup

Non-lognormal Consumption

Assume power utility with time discount factor δ and risk aversion γ.

Consider an asset that pays Dt = Cλ
t .

The parameter λ scales the volatility of dividends (a proxy for
leverage).

I When λ = 0, the asset is riskless.
I When λ = 1, the asset is the aggregate wealth portfolio which pays
aggregate consumption.

Pt = Et
∞

∑
j=1

δj
�
Ct+j
Ct

��γ

Cλ
t+j

= DtEt
∞

∑
j=1

δj
�
Ct+j
Ct

�λ�γ

.

John Y. Campbell (Ec2723) Consumption-Based Asset Pricing (2) October 2010 3 / 25



Non-lognormal consumption Basic Setup

Non-lognormal Consumption

De�ne δ = exp(�r �), so r � is the pure rate of time preference.
Assume iid consumption growth and de�ne G = ct+1 � ct .

Pt = DtEt
∞

∑
j=1

δj
�
Ct+j
Ct

�λ�γ

= Dt
∞

∑
j=1
exp(�r �j)E[(exp(λ� γ)G )j ].
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Non-lognormal consumption Basic Setup

Cumulant Generating Function
The cumulant generating function for any random variable G is the log of
the moment generating function:

c(θ) = logE exp(θG ).

(Note c does not refer to log consumption here!)
Important property:

c(θ) =
∞

∑
n=1

κnθn

n!
,

where κn is the n�th cumulant of G .

Here, κ1 is the mean of log consumption growth, κ2 is the variance
σ2, κ3/σ3 is the skewness, κ4/σ4 is the excess kurtosis, and so forth.
All cumulants above the second are zero when log consumption
growth is normal.
c(0) = 0 and c(1) is the log of the mean of simple gross
consumption growth.
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Non-lognormal consumption Asset Pricing Implications

Dividend-Price Ratio

Pt = Dt
∞

∑
j=1
exp(�r �j)E[(exp(λ� γ)G )j ]

= Dt
∞

∑
j=1
exp[�(r � � c(λ� γ))j ]

= Dt
exp[�(r � � c(λ� γ))]

1� exp[�(r � � c(λ� γ))]
.

De�ne d/p = log(1+Dt/Pt ), the log gross dividend yield. Then

d/p = r � � c(λ� γ).

Special case: when λ = 1, we have a consumption claim and

c/w = r � � c(1� γ) = r � �
∞

∑
n=1

κn(1� γ)n

n!
.
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Non-lognormal consumption Asset Pricing Implications

Gross Return

The gross return on the asset is

1+ Rt+1 =
Pt+1
Pt

�
1+

Dt+1
Pt+1

�
=

Dt+1
Dt

exp(r � � c(λ� γ)).

Thus the expected gross return is

1+ ERt+1 = E exp(Gλ) exp(r � � c(λ� γ))

= exp(r � � c(λ� γ) + c(λ)).

De�ne er = log(1+ ERt+1), the log of the expected gross return. Then

er = r � � c(λ� γ) + c(λ).
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Non-lognormal consumption Asset Pricing Implications

Equity Premium

er = r � � c(λ� γ) + c(λ).

Special cases:

When λ = 0, we have a riskless asset and

rf = r
� � c(�γ) = r � �

∞

∑
n=1

κn(�γ)n

n!
.

When λ = 1, we have a consumption claim and

er = r � � c(1� γ) + c(1).

The risk premium on the consumption claim (the equity premium) is
the di¤erence:

rp = c(1) + c(�γ)� c(1� γ) =
∞

∑
n=2

κn
n!
f1+ (�γ)n � (1� γ)ng .

These results generalize the familiar lognormal formulas to allow for
the in�uence of higher moments.
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Non-lognormal consumption Asset Pricing Implications

Gordon Growth Model

Putting these results together, we have a Gordon growth model,

dp = er � c(λ).

In the case of the consumption claim,

c/w = rf + rp � c(1).
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Epstein-Zin Preferences

Epstein-Zin Preferences

Ut =
�
(1� δ)C

1�γ
θ

t + δ
�

Et U
1�γ
t+1

� 1
θ

� θ
1�γ

,

where θ � (1� γ)/(1� 1/ψ).

Here γ is risk aversion and ψ is the elasticity of intertemporal
substitution.

When γ = 1/ψ, θ = 1 and the recursion becomes linear; it can then
be solved forward to yield the familiar time-separable power utility
model.

John Y. Campbell (Ec2723) Consumption-Based Asset Pricing (2) October 2010 10 / 25



1
Elasticity of Intertemporal Substitution (ψ)

Constant consumption-wealth ratio

Myopic portfolio choice

C
oe

ffi
ci

en
t o

f R
el

at
iv

e 
R

is
k 

Av
er

si
on

 (γ
)  

Log utility

1

Power utility

γψ 1=



Epstein-Zin Preferences

Euler Equation

Assume intertemporal budget constraint

Wt+1 = (1+ Rw ,t+1) (Wt � Ct ).

Then we get an Euler equation

1 = Et

24(δ

�
Ct+1
Ct

�� 1
ψ

)θ �
1

(1+ Rw ,t+1)

�1�θ

(1+ Ri ,t+1)

35 .
Di¤erent from power utility because the Euler equation depends on
the form of the intertemporal budget constraint.

All assets must be tradable and included in wealth.
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Epstein-Zin Preferences

Lognormal Version of Epstein-Zin Model

If asset returns and consumption are homoskedastic and jointly lognormal,

rf ,t+1 = � log δ+
1
ψ

Et [∆ct+1] +
θ � 1
2

σ2w �
θ

2ψ2
σ2c .

Et [ri ,t+1]� rf ,t+1 +
σ2i
2
= θ

σic
ψ
+ (1� θ)σiw .

The Epstein-Zin model nests the consumption CAPM with power
utility (θ = 1) and the traditional static CAPM (θ = 0).

But can we treat σic and σiw as independently measurable quantities?
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Epstein-Zin Preferences Using the Budget Constraint

Approximate Budget Constraint

rw ,t+1 � Et rw ,t+1 = (Et+1 � Et )
∞

∑
j=0

ρj∆dw ,t+1+j

�(Et+1 � Et )
∞

∑
j=1

ρj rw ,t+1+j .

dw ,t = ct
Et rw ,t+1 = (1/ψ)Et [∆ct+1]

rw ,t+1 � Et rw ,t+1 = (∆ct+1 � Et∆ct+1)

+

�
1� 1

ψ

�
(Et+1 � Et )

∞

∑
j=1

ρj∆ct+1+j .
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Epstein-Zin Preferences Using the Budget Constraint

Substituting Out Consumption

∆ct+1 � Et ∆ct+1 = rw ,t+1 � Et rw ,t+1

+(1� ψ)(Et+1 � Et )
∞

∑
j=1

ρj rw ,t+1+j .

σic = σiw + (1� ψ)σih,

σih � Cov(ri ,t+1 � Et ri ,t+1, (Et+1 � Et )
∞

∑
j=1

ρj rw ,t+1+j ).
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Epstein-Zin Preferences Using the Budget Constraint

Substituting Out Consumption

Et [ri ,t+1]� rf ,t+1 +
σ2i
2
= γσiw + (γ� 1)σih.

Call this �CAPM+�, because it nests the CAPM and adds aversion to
changing investment opportunities.

We get CAPM when γ = 1 (myopic asset demand).

The EIS ψ plays no direct role.

Empirical implementation of Merton (1973) intertemporal CAPM
(ICAPM) due to Campbell (1993).

John Y. Campbell (Ec2723) Consumption-Based Asset Pricing (2) October 2010 15 / 25



Epstein-Zin Preferences Using the Budget Constraint

Substituting Out Wealth

σiw = σic +

�
1� 1

ψ

�
σig ,

σig � Cov(ri ,t+1 � Et ri ,t+1, (Et+1 � Et )
∞

∑
j=1

ρj∆ct+1+j ).

Et [ri ,t+1]� rf ,t+1 +
σ2i
2
= γσic +

�
γ� 1

ψ

�
σig .

Call this "CCAPM+�, because it nests the CCAPM and adds aversion
to �uctuations in long-run consumption growth.

We get CCAPM when γ = 1/ψ (power utility).

Formula originally derived by Restoy and Weil (1998).
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Epstein-Zin Preferences Using the Budget Constraint

Long-Run Risk Model

Bansal and Yaron (2004) "long-run risk" model applies CCAPM+
approach to the equity premium and equity volatility puzzles.

Initial emphasis on persistent shocks to consumption growth.

Also adds changing variance, which turns out to be key.

Bansal, Kiku, and Yaron (2007) boost the e¤ect of changing variance
and achieve greater empirical success.

Beeler and Campbell (2009) take the other side in a debate over the
empirical merits of this framework.
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Epstein-Zin Preferences Persistent Consumption Growth

Persistent Consumption Growth

rw ,t+1 � Et rw ,t+1 = (∆ct+1 � Et∆ct+1)

+

�
1� 1

ψ

�
(Et+1 � Et )

∞

∑
j=1

ρj∆ct+1+j .

Et [ri ,t+1]� rf ,t+1 +
σ2i
2
= γσic +

�
γ� 1

ψ

�
σig .

Assume shocks to c and g are uncorrelated. Then

Et [rw ,t+1]� rf ,t+1 +
σ2w
2
= γσ2c +

�
γ� 1

ψ

��
1� 1

ψ

�
σ2g .

The second term is positive if ψ > 1.

John Y. Campbell (Ec2723) Consumption-Based Asset Pricing (2) October 2010 18 / 25



Epstein-Zin Preferences Persistent Consumption Growth

Persistent Consumption Growth: Another Story

Other authors have argued that consumption responds sluggishly to
shocks because of adjustment costs.

Thus short-run consumption covariance understates risk.

Example: Gabaix-Laibson (NBER Macro Annual 2001).
I Agents update consumption every D periods, and the distribution of
update times is uniform.

I So every period, 1/D of agents adjust.
I Household that adjusts at time i 2 [0, 1] can react to fraction i of
information in the period, and a¤ects fraction (1� i) of consumption.

I Downward bias in sensitivity of consumption to news is

1Z
0

i(1� i) =
�
i2

2
� i3

3

�1
0
=
1
6
.

I Since only 1/D of agents adjust at all, we get 1/6D bias in
consumption sensitivity, and 6D bias in estimated risk aversion.
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Epstein-Zin Preferences Persistent Consumption Growth

Persistent Consumption Growth: Another Story

This story implies that
I Aggregate consumption growth is positively autocorrelated as agents
gradually adjust to news

I Covariance of consumption growth and stock returns is increasing with
the horizon

I Long-run consumption reveals high true risk, which is obscured at short
horizons.

Empirically, there is some short-run autocorrelation of consumption
growth

I Probably related to time-averaging of consumption
I Working (1960): time-average of a Brownian motion (random walk) is
an MA(1) in changes with coe¢ cient 0.25.
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Epstein-Zin Preferences Persistent Consumption Growth

Persistent Consumption Growth: Another Story

Empirically, stock returns lead consumption growth by one quarter
which may result from time-averaging and short delays in consumption

I "Beginning of period" timing convention for consumption vs. "end of
period" convention

There is a di¤erence between Cov(rt+1, ct+h � ct ) and
Cov(rt+1 + ...+ rt+h, ct+h � ct ).

I The former increases with h more strongly than the latter.
I The reason is that consumption growth predicts future stock returns
negatively.
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Epstein-Zin Preferences Volatility and Stock Prices

Changing Variance
Consider a simple case where ct follows a random walk with drift:

∆ct = g + εt .

The expected return on the wealth portfolio is

Et rw ,t+1 = � ln δ+
g
ψ
� σ2

2

�
1� 1

ψ

�
(1� γ).

Now use the expression

pit � dit =
k

1� ρ
+ Et

∞

∑
j=0

ρj [∆di ,t+1+j � ri ,t+1+j ].

Set i = w , dwt = ct , and use the above expression for the return on
wealth. We get

pwt � dwt = constant+
�

1
1� ρ

��
1� 1

ψ

��
g +

σ2

2
(1� γ)

�
.
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Epstein-Zin Preferences Volatility and Stock Prices

Changing Variance

pwt � dwt = constant+
�

1
1� ρ

��
1� 1

ψ

��
g +

σ2

2
(1� γ)

�
.

Let�s hold g constant while σ2 increases. What does it take for
consumption claim price to fall?

We need (1� 1/ψ) and (1� γ) to have opposite signs, so we need
ψ and γ on the same side of one. Inconsistent with power utility.

Intuition:
I An increase in volatility with unchanged geometric mean consumption
growth is an improvement in investment opportunities if γ < 1 and a
deterioration if γ > 1.

I If ψ > 1, an improvement in investment opportunities causes agents to
desire lower consumption relative to wealth, driving up wealth for given
consumption. If ψ < 1, the opposite occurs.

I Putting these together, we need ψ and γ to be on the same side of one
to get wealth to fall when volatility increases.
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Epstein-Zin Preferences Volatility and Stock Prices

Changing Variance

pwt � dwt = constant+
�

1
1� ρ

��
1� 1

ψ

��
g +

σ2

2
(1� γ)

�
.

Let�s hold arithmetic mean consumption growth, g + σ2/2, constant
while σ2 increases. What does it take for consumption claim price to
fall?
We need (1� 1/ψ) > 0, that is we need ψ > 1.
Intuition:

I An increase in volatility with unchanged arithmetic mean consumption
growth is a deterioration in investment opportunities for any
risk-averse consumer.

I If ψ > 1, a deterioration in investment opportunities causes agents to
desire higher consumption relative to wealth, driving down wealth for
given consumption.

The intuition that volatility drives down wealth is the most powerful
argument for ψ > 1.
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Epstein-Zin Preferences Changing Higher Moments

Asset Volatility and Disaster Risk

Disaster-risk explanation for equity volatility is that the perceived
probability of disaster, or the consequences of disaster for asset
holders (the recovery rate or asset "resilience"), change over time.

If disasters are interpreted as wars, the timing of asset price
movements seems o¤, at least in the last 50 years.

Changes in resilience are hard to measure.

An alternative approach: combine disaster risk with limited
participation, and interpret disaster as political expropriation.
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Source: Robert Shiller, “Low Interest Rates and High Asset Prices”, 2007,
using Global Financial Database





Where Next?

•
 

Example: UK 1974 miners’
 

strike, 3-day week, 
fall of Conservative government

•
 

Spike in labor share (Bottazzi, Pesenti, and van 
Wincoop, EER 1996), and uncertainty about 
future of UK capitalism
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