Household Finance

"Household Finance", JF August 2006

"Down or Out: Assessing the Welfare Costs of Household Investment Mistakes", with Laurent Calvet and Paolo Sodini, *JPE* October 2007

"Fight or Flight? Rebalancing Behavior of Individual Investors", with Calvet and Sodini, *QJE* February 2009

John Y. Campbell

Household Finance

- A field with much interesting research but still lacking in definition and status.
- How do households use financial instruments to attain their objectives?
- Unlike asset pricing, no special status for wealthy or risk-tolerant households.

Positive vs. Normative

Positive household finance:

- How do households invest?
- Hard to measure.

Normative household finance:

- How should households invest?
- Hard to model.

Can they be different?

- Revealed preference.
- Investment mistakes.

Investment Mistakes

- Some decisions are inconsistent with
 - a broad range of standard models, and
 - the advice commonly given by financial planners.
- I will interpret these as investment mistakes.
- Households may make them, but can learn to avoid them.

Investment Mistakes

Who makes them?

What are the welfare costs?

Does financial innovation help?

How can we help?

Four Examples

Mistake 1: Failure to participate.

Mistake 2: Failure to diversify.

Mistake 3: Risky share inertia.

• Mistake 4: Mortgage refinancing inertia.

Mistake 1: Failure to Participate

Figure 1: The US Wealth Distribution

100% 80% 60% 40% 20% 0% 30 40 50 60 70 80 90 10 20 100 Percentile distribution of total assets safe assets private business vehicles ■real estate — public equity

Figure 2: Participation Rates by Asset Class

100% 80% 60% 40% 20% 0% 10 20 30 40 50 60 70 80 90 100 0 Percentile of distribution of total assets safe assets real estate •private business — public equity vehicles -

Figure 3: Asset Class Shares in Household Portfolios

Who Participates?

2001 Survey of Consumer Finances

Reference	57% participation
High school	15% increase
College	28% increase
Income +1σ	17% increase
Wealth +1σ	37% increase

Is This A Mistake?

- Fixed costs may justify nonparticipation.
- But the effect of education suggests that this is not just a rational response to fixed costs.
- We will see similar patterns in other financial decisions that are harder to explain using fixed costs.

Mistake 2: Failure to Diversify

The Measurement Challenge

- Surveys do not generally go down to the individual asset level.
- Brokerage account data do not show a household's complete portfolio.
- Calvet, Campbell, and Sodini (JPE 2007) use Swedish government data:
 - collected because Sweden has a wealth tax.
 - details of each citizen's portfolio at the end of each year.

Household M-V Analysis

- Historical average returns are noisy estimates of mean returns, especially in short samples.
- Accordingly CCS impose an asset pricing model and use it to infer mean returns.
- Base case: international CAPM where the hedged world index is mean-variance efficient.
- Alternative case: Fama-French three-factor model with market, size, and value factors.
- CCS assess mean-variance efficiency of the portfolios held by households at the end of 2002.

CCS Scatter Plots of Household Portfolios

Complete Portfolios

Measuring Diversification

- Household Sharpe ratio $S_h = \frac{\mu_h}{\sigma_h}$
- Relative Sharpe ratio loss wrt benchmark S_B

$$RSRL_h = 1 - \frac{S_h}{S_R}$$

Return loss (vertical distance to the efficient frontier)

$$RL_h = S_B \sigma_h - \mu_h$$

Return Loss

- Median return loss is 1.17% (\$131 per year) relative to hedged world index and only 0.30% (\$33) relative to unhedged world index.
- These numbers are modest even though median share of idiosyncratic variance in total variance is quite large at 56%.
- At the 95th percentile, return losses are much larger: 5.04% (\$2,204) and 2.65% (\$851).

Who Incurs Return Loss?

- Financially sophisticated households (rich, educated, with complementary financial markets experience) invest efficiently but take more risk.
- Retired and unemployed households invest inefficiently and take less risk.
- Entrepreneurs and larger households invest conservatively.
- Overall, financially sophisticated nonentrepreneurial households have the greatest return losses.
- Consistent with the idea that people know their limitations.

Return standard deviation

Conclusions of JPE Paper

- Many Swedish households are well diversified, but there is significant cross-sectional variation in household portfolio returns
- Mutual funds play a vital role in diversification.
- A minority of households are undiversified.
- Financial sophistication improves portfolio efficiency but also increases risk-taking.
- The welfare cost of nonparticipation is smaller when we consider that nonparticipants would be likely to invest cautiously and inefficiently.

Missing Fees

- CCS analysis ignores mutual fund fees
- Treats mutual funds as if they obey the CAPM, like individual stocks
- Results are fairly similar assuming a flat fee across all funds except the top ten, for which fees are directly measured
- But it would be very interesting to see if less sophisticated households pay higher fees

Mistake 3: Risky Share Inertia

Basic Facts 1999-2002

- High stock returns 1999, then bear market 2000-2002
- Household participation rate increased in 2000, then fell only very slightly
- But the share of risky assets in the portfolios of participating households declined substantially
- Our estimate of portfolio standard deviation moves closely with the risky share, so we focus on the risky share as a convenient summary measure of risktaking
- At first we look only at continuing participants

TABLE 1. SUMMARY STATISTICS

B. Participation and Average Risky Share

	1999	2000	2001	2002
Rate of participation	61.5%	66.3%	65.9%	64.8%
Average risky share (equal weighted)	56.5%	56.6%	52.3%	45.2%
Average risky share (wealth weighted)	74.9%	73.7%	66.1%	54.7%

C. Asset Returns

	1999	2000	2001	2002
Interest rate	3.1%	3.9%	4.1%	4.1%
MSCI Sweden index	79.2%	-18.0%	-26.8%	-48.6%
Pooled index (equal weighted)	NA	-4.3%	-11.1%	-32.1%
Pooled index (value weighted)	NA	-6.1%	-11.6%	-32.2%
MSCI World index (in Swedish Krona)	27.2%	-7.1%	-11.3%	-37.9%
MSCI World index (in US dollars)	19.0%	-18.5%	-20.7%	-22.4%

What Drives the Risky Share?

- Why did the aggregate risky share decline?
 - Inertia
 - A decline in the desired risky share
- We cannot tell using aggregate data
 - Small aggregate flows are consistent with either explanation
 - In closed-economy general equilibrium, desired and actual risky share must coincide
- We use cross-sectional variation to get extra information
 - Variation in the initial risky share
 - Variation in portfolios and thus in realized returns

Passive Risky Share

- Our dataset gives us the unique ability to calculate the passive share, the risky share that will result from risky asset returns if a household trades no assets.
- The passive share is U-shaped in initial risky share if risky returns are negative, and humpshaped if they are positive.
- Portfolio inertia implies that a household's actual risky share will closely track its passive share.

Passive Risky Share

$$w_{h,t+1}^p = \omega^p(w_{h,t}; r_{h,t+1}),$$

$$\omega^p(w;r) \equiv \frac{w(1+r)}{w(1+r) + (1-w)(1+r_f)}.$$

$$P_{h,t+1} = w_{h,t+1}^p - w_{h,t}$$

Active and Passive Shares

$$A_{h,t+1} = w_{h,t+1} - w_{h,t+1}^p$$

$$w_{h,t+1} - w_{h,t} = P_{h,t+1} + A_{h,t+1}.$$

$$\ln(w_{h,t+1}) - \ln(w_{h,t}) = p_{h,t+1} + a_{h,t+1},$$

Figure 3

D. 2001 to 2002

Risky share at end of 2001 (%)

Figure 3

A. Entire Period (1999 to 2002)

Risky share at end of 1999 (%)

Rebalancing and Mean-Reversion

- These figures suggest that households rebalance (active hump shape offsetting passive U shape).
- They also suggest mean-reversion in portfolio share (downward slope in active change).
- But there is limited information in the data aggregated this way.

Identifying Rebalancing

- Because households are imperfectly diversified, their risky portfolio returns vary cross-sectionally.
 - Our earlier paper found a 56% median share of idiosyncratic variance in total variance.
- This enables us to estimate rebalancing propensity more precisely.
- Overall, rebalancing offsets more than half the passive variation in the risky share.
- More sophisticated households have a stronger tendency to rebalance.

Figure 2

A. Passive Change

Figure 2

B. Active Change

TABLE 2. REGRESSION OF ACTIVE CHANGE ON PASSIVE CHANGE

A. In Levels

	All yea	irs	2000)	2001		2002	2
	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat
Passive change	-0.498	-51.80	-0.632	-27.50	-0.618	-29.00	-0.431	-34.00
Initial share (demeaned)	-0.186	-144.00	-0.194	-87.90	-0.176	-82.30	-0.190	-79.10
Intercept			0.025	33.60	-0.032	-37.40	-0.023	-19.80
1999 dummy	0.027	39.00						
2000 dummy	-0.029	-40.60						
2001 dummy	-0.028	-28.90						
Adjusted R ²	0.12		0.12		0.10		0.10	
Number of observations	187,780		60,341		64,119		63,320	

B. In Logs

	All years		2000		2001		2002	
	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat	Estimate	t-stat
Passive change in logs	-0.461	-47.50	-0.776	-38.00	-0.583	-26.70	-0.425	-30.40
Log of risky share (demeaned)	-8.195	-136.00	-0.273	-123.00	-0.148	-62.10	-0.158	-55.90
Intercept			0.094	37.20	-0.075	-26.10	-0.075	-17.50
1999 dummy	0.107	41.00						
2000 dummy	-0.066	-25.40						
2001 dummy	-0.083	-24.50						
Adjusted R ²	0.14		0.23		0.09		0.10	
Number of observations	187,780		60,341		64,119		63,320	

Notes: We filtered out households with a risky share in the lowest 1% of the sample. All household characteristics are demeaned. The passive and active changes are expressed in percentages.

A Partial Adjustment Model

Target share

Passive share

$$\ln(w_{h,t+1}) = \phi_h \ln(w_{h,t+1}^d) + (1 - \phi_h) \ln(w_{h,t+1}^p) + \varepsilon_{h,t+1}.$$

$$\phi_h = \varphi_0 + \varphi' x_{h,t}$$
,

Adjustment speed

$$\Delta \ln(w_{h,t+1}^d) = \delta_{0,t+1} + \delta' x_{h,t}.$$

Change in the target

An Econometric Problem

- To handle household fixed effects in the target risky share, one must difference the model
- The error term in the regression is then MA(1) and correlated with the change in the passive risky share.
- A positive shock between *t*-1 and *t* raises the risky share at *t*, which influences the passive share at *t*+1.
- Solution: create an instrument for the change in the passive share that removes this effect.

An Instrument

 The zero-rebalancing passive change at t+1 is the passive change that would be observed if the household did not rebalance at t.

$$\ln \omega^p(w_{h,t}^p; r_{h,t+1}) - \ln(w_{h,t}^p)$$

- Because rebalancing is limited, this is correlated with the actual passive change.
- But it is uncorrelated with the MA(1) error term in the regression.

TABLE 4. ADJUSTMENT MODEL WITHOUT CHARACTERISTICS

	OLS		IV	
	Estimate	t-stat	Estimate	t-stat
Reduced Form Estimates				
Change in log passive share	-0.122	-44.20	0.361	38.70
Intercept 2001	-0.111	-41.90	-0.140	-46.50
Intercept 2002	-0.245	-92.10	-0.121	-32.30
Structural Parameters				
Adjustment speed φ ₀	1.122	408.00	0.640	68.70
Target change $\delta_{0,2001}$	-0.099	-41.40	-0.219	-35.60
Target change $\delta_{0,2002}$	-0.219	-95.40	-0.189	-41.00
Adjusted R ²	0.08			
Number of observations	120,067		120,067	

Who Rebalances?

- Financially sophisticated households (with greater wealth, income, and education) rebalance faster
- Wealthy households have a target share that declines less in the bear market
- An increase in financial wealth increases the target share
 - Suggests DRRA, could result from habit formation
 - Effect depends on IV, but controls for inertia
 - Compare with Brunnermeier-Nagel (AER 2007)

Mistake 4: Mortgage Refinancing Inertia

The US Mortgage Market

- The mortgage is the largest financial contract for a typical household.
- In the US, nominal fixed-rate mortgages predominate.
- These mortgages carry a valuable option to refinance.
- In the past, some households have refinanced slowly and have paid high rates on old mortgages.

Figure 5: Distribution of Mortgage Spreads mortgage holders paying a higher Fraction of 30 year fixed rate spread 0.2 3 -2 Spread over current 30 year mortgage rate -2003 2001 -*- 1999 ----1997

Who Refinances?

American Housing Survey 2001-03

Reference	28%
High school	5% increase
College	9% increase
Income +1σ	1% increase
Home val. +1σ	7% increase
Age +1σ	4% decrease

Who Moves?

American Housing Survey 2001-03

Reference	5% confirmed
High school	4% increase
College	5% increase
Income +1σ	1% increase
Home val. +1σ	0% decrease
Age +1σ	2% decrease

Who Misstates Their Rate?

American Housing Survey 2001

Reference	1.3%
High school	0.6% decrease
College	0.5% decrease
Income +1σ	0.3% decrease
Home val. +1σ	0.1% increase
Age +1σ	0.1% decrease

Mortgages in the Credit Boom

- During the credit boom, there was financial innovation in the subprime lending market.
- People with poor credit took out adjustable-rate mortgages (ARMs) with low initial rates and large potential for upside adjustments.
- ARMs could only be refinanced with rising house prices. House price declines and upward rate adjustments have driven up defaults and foreclosures.
- Did people understand the risks of these ARMs?

Equilibrium Household Finance

Equilibrium Household Finance

- Household investment problems are inherently complex.
- Often, contracts do not make them easier.
- It may not be surprising that households make investment mistakes.
- But why don't easier-to-manage contracts evolve?

Barriers to Financial Innovation

General barriers:

- Costs of reaching households.
- Lack of effective patent protection.

Specific barrier to simplifying innovation:

- Complex products create cross-subsidy from naïve to sophisticated households.
- Example: mortgage refinancing option.

Cross-Subsidy and Equilibrium

- Cross-subsidy permits "shrouded equilibrium" (Gabaix and Laibson, QJE 2006).
- Naïve households do not adopt a new product because they do not understand it.
- Sophisticated households lose cross-subsidy if they switch to the new product.
- Innovators do not gain by educating households.
- How important is cross-subsidy in practice?

Cross-Subsidy in Mortgages

- In the US, fixed mortgage rates have been lower because of sluggish refinancing:
 - Total payments made in AHS exceeding current rate
 + 1%: 53bp in 1997, 43 bp in 1999, 66bp in 2001, and
 107bp in 2003.
- This inhibits the development of automatically refinancing or inflation-adjusted mortgages.

Cross-Subsidy in Mortgages

- Miles Report on UK mortgage finance
- UK adjustable mortgages offer
 - low teaser rate (roughly LIBOR).
 - high standard rate (LIBOR + 175bp).
 - no refinancing penalty.
- This is possible only because of sluggish refinancing
 - almost 1/3 of borrowers paid standard rate in 2003.
- It inhibits the use of fixed-rate mortgages.

Conclusion

Investment Mistakes

- Who makes them?
 - Poorer and less educated households.
- What are the welfare costs?
 - Modest for many, substantial for some.
 - Interactions across mistakes.

Investment Mistakes

Does financial innovation help?

- Often proceeds slowly in retail markets.
- The problem of cross-subsidy.
- The problem of innovation to exploit confusion.
- IT allows cheap customization.

How can we help?

- Basic financial literacy.
- Disclosures, default options, and product design: household financial engineering.